Setting Up a Surface-Enhanced Raman Scattering Database for Artificial-Intelligence-Based Label-Free Discrimination of Tumor Suppressor Genes
The quality of input data in deep learning is tightly associated with the ultimate performance of the machine learner. Taking advantage of the unique merits of surface-enhanced Raman scattering (SERS) methodology in the collection and construction of a database (e.g., abundant intrinsic fingerprint...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2018-12, Vol.90 (24), p.14216-14221 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14221 |
---|---|
container_issue | 24 |
container_start_page | 14216 |
container_title | Analytical chemistry (Washington) |
container_volume | 90 |
creator | Shi, Huayi Wang, Houyu Meng, Xinyu Chen, Runzhi Zhang, Yishu Su, Yuanyuan He, Yao |
description | The quality of input data in deep learning is tightly associated with the ultimate performance of the machine learner. Taking advantage of the unique merits of surface-enhanced Raman scattering (SERS) methodology in the collection and construction of a database (e.g., abundant intrinsic fingerprint information, noninvasive data acquisition process, strong anti-interfering ability, etc.), herein we set up a SERS-based database of deoxyribonucleic acid (DNA), suitable for artificial intelligence (AI)-based sensing applications. The database is collected and analyzed by silver nanoparticles (Ag NPs)-decorated silicon wafer (Ag NPs@Si) SERS chip, followed by training with a deep neural network (DNN). As proof-of-concept applications, three kinds of representative tumor suppressor genes, i.e., p16, p21, and p53 fragments, are readily discriminated in a label-free manner. Prominent and reproducible SERS spectra of these DNA molecules are collected and employed as input data for DNN learning and training, which enables selective discrimination of DNA target(s). The accuracy rate for the recognition of specific DNA target reached 90.28%. |
doi_str_mv | 10.1021/acs.analchem.8b03080 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2136062627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2136062627</sourcerecordid><originalsourceid>FETCH-LOGICAL-a442t-914cca2323a64d1b4b4b2afa38179d0336af6f96443cef60b6b432e965a446a43</originalsourceid><addsrcrecordid>eNp9kbtu2zAUhomgQeKkfYOiINCli5zDi2lpTHNrAAMF6mQWjqjDRIFEqSQ19CH6zqVhJ0OGggM5fP9PHn6MfRawFCDFBdq4RI-9faZhWTagoIQjthArCYUpS_mBLQBAFXINcMrOYnwBEAKEOWGnCvTKVKpcsL9bSqnzT_xx4si3c3Boqbjxz-gttfwXDuj51mJKFHbYNSZsMBJ3Y-CXIXWusx32xb1P1PfdE-VY8T0DLd9gQ31xG4j4dRdt6IbOY-pGz0fHH-YhF2znaQoUYz7ekaf4kR077CN9Ouzn7PH25uHqR7H5eXd_dbkpUGuZikpoa1EqqdDoVjQ6L4kOVSnWVQtKGXTGVUZrZckZaEyjlaTKrHLeoFbn7Nu-dwrj75liqof8wjwAehrnWEuhDBhp5DqjX9-hL-Mc8r_vKKNXspKyypTeUzaMMQZy9ZTnxfCnFlDvdNVZV_2qqz7oyrEvh_K5Gah9C736yQDsgV387eL_dv4Dq_Ok1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2164529229</pqid></control><display><type>article</type><title>Setting Up a Surface-Enhanced Raman Scattering Database for Artificial-Intelligence-Based Label-Free Discrimination of Tumor Suppressor Genes</title><source>ACS Publications</source><creator>Shi, Huayi ; Wang, Houyu ; Meng, Xinyu ; Chen, Runzhi ; Zhang, Yishu ; Su, Yuanyuan ; He, Yao</creator><creatorcontrib>Shi, Huayi ; Wang, Houyu ; Meng, Xinyu ; Chen, Runzhi ; Zhang, Yishu ; Su, Yuanyuan ; He, Yao</creatorcontrib><description>The quality of input data in deep learning is tightly associated with the ultimate performance of the machine learner. Taking advantage of the unique merits of surface-enhanced Raman scattering (SERS) methodology in the collection and construction of a database (e.g., abundant intrinsic fingerprint information, noninvasive data acquisition process, strong anti-interfering ability, etc.), herein we set up a SERS-based database of deoxyribonucleic acid (DNA), suitable for artificial intelligence (AI)-based sensing applications. The database is collected and analyzed by silver nanoparticles (Ag NPs)-decorated silicon wafer (Ag NPs@Si) SERS chip, followed by training with a deep neural network (DNN). As proof-of-concept applications, three kinds of representative tumor suppressor genes, i.e., p16, p21, and p53 fragments, are readily discriminated in a label-free manner. Prominent and reproducible SERS spectra of these DNA molecules are collected and employed as input data for DNN learning and training, which enables selective discrimination of DNA target(s). The accuracy rate for the recognition of specific DNA target reached 90.28%.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.8b03080</identifier><identifier>PMID: 30456938</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Artificial intelligence ; Artificial neural networks ; Chemistry ; Data acquisition ; Data acquisition systems ; Deoxyribonucleic acid ; DNA ; Genes ; Information processing ; Machine learning ; Nanoparticles ; Neural networks ; p53 Protein ; Raman spectra ; Silicon ; Silver ; Target recognition ; Training ; Tumor suppressor genes ; Tumors</subject><ispartof>Analytical chemistry (Washington), 2018-12, Vol.90 (24), p.14216-14221</ispartof><rights>Copyright American Chemical Society Dec 18, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a442t-914cca2323a64d1b4b4b2afa38179d0336af6f96443cef60b6b432e965a446a43</citedby><cites>FETCH-LOGICAL-a442t-914cca2323a64d1b4b4b2afa38179d0336af6f96443cef60b6b432e965a446a43</cites><orcidid>0000-0003-2058-275X ; 0000-0003-1672-4057 ; 0000-0002-5134-9881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.8b03080$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.8b03080$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30456938$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Huayi</creatorcontrib><creatorcontrib>Wang, Houyu</creatorcontrib><creatorcontrib>Meng, Xinyu</creatorcontrib><creatorcontrib>Chen, Runzhi</creatorcontrib><creatorcontrib>Zhang, Yishu</creatorcontrib><creatorcontrib>Su, Yuanyuan</creatorcontrib><creatorcontrib>He, Yao</creatorcontrib><title>Setting Up a Surface-Enhanced Raman Scattering Database for Artificial-Intelligence-Based Label-Free Discrimination of Tumor Suppressor Genes</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>The quality of input data in deep learning is tightly associated with the ultimate performance of the machine learner. Taking advantage of the unique merits of surface-enhanced Raman scattering (SERS) methodology in the collection and construction of a database (e.g., abundant intrinsic fingerprint information, noninvasive data acquisition process, strong anti-interfering ability, etc.), herein we set up a SERS-based database of deoxyribonucleic acid (DNA), suitable for artificial intelligence (AI)-based sensing applications. The database is collected and analyzed by silver nanoparticles (Ag NPs)-decorated silicon wafer (Ag NPs@Si) SERS chip, followed by training with a deep neural network (DNN). As proof-of-concept applications, three kinds of representative tumor suppressor genes, i.e., p16, p21, and p53 fragments, are readily discriminated in a label-free manner. Prominent and reproducible SERS spectra of these DNA molecules are collected and employed as input data for DNN learning and training, which enables selective discrimination of DNA target(s). The accuracy rate for the recognition of specific DNA target reached 90.28%.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Chemistry</subject><subject>Data acquisition</subject><subject>Data acquisition systems</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Genes</subject><subject>Information processing</subject><subject>Machine learning</subject><subject>Nanoparticles</subject><subject>Neural networks</subject><subject>p53 Protein</subject><subject>Raman spectra</subject><subject>Silicon</subject><subject>Silver</subject><subject>Target recognition</subject><subject>Training</subject><subject>Tumor suppressor genes</subject><subject>Tumors</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kbtu2zAUhomgQeKkfYOiINCli5zDi2lpTHNrAAMF6mQWjqjDRIFEqSQ19CH6zqVhJ0OGggM5fP9PHn6MfRawFCDFBdq4RI-9faZhWTagoIQjthArCYUpS_mBLQBAFXINcMrOYnwBEAKEOWGnCvTKVKpcsL9bSqnzT_xx4si3c3Boqbjxz-gttfwXDuj51mJKFHbYNSZsMBJ3Y-CXIXWusx32xb1P1PfdE-VY8T0DLd9gQ31xG4j4dRdt6IbOY-pGz0fHH-YhF2znaQoUYz7ekaf4kR077CN9Ouzn7PH25uHqR7H5eXd_dbkpUGuZikpoa1EqqdDoVjQ6L4kOVSnWVQtKGXTGVUZrZckZaEyjlaTKrHLeoFbn7Nu-dwrj75liqof8wjwAehrnWEuhDBhp5DqjX9-hL-Mc8r_vKKNXspKyypTeUzaMMQZy9ZTnxfCnFlDvdNVZV_2qqz7oyrEvh_K5Gah9C736yQDsgV387eL_dv4Dq_Ok1g</recordid><startdate>20181218</startdate><enddate>20181218</enddate><creator>Shi, Huayi</creator><creator>Wang, Houyu</creator><creator>Meng, Xinyu</creator><creator>Chen, Runzhi</creator><creator>Zhang, Yishu</creator><creator>Su, Yuanyuan</creator><creator>He, Yao</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2058-275X</orcidid><orcidid>https://orcid.org/0000-0003-1672-4057</orcidid><orcidid>https://orcid.org/0000-0002-5134-9881</orcidid></search><sort><creationdate>20181218</creationdate><title>Setting Up a Surface-Enhanced Raman Scattering Database for Artificial-Intelligence-Based Label-Free Discrimination of Tumor Suppressor Genes</title><author>Shi, Huayi ; Wang, Houyu ; Meng, Xinyu ; Chen, Runzhi ; Zhang, Yishu ; Su, Yuanyuan ; He, Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a442t-914cca2323a64d1b4b4b2afa38179d0336af6f96443cef60b6b432e965a446a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Chemistry</topic><topic>Data acquisition</topic><topic>Data acquisition systems</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Genes</topic><topic>Information processing</topic><topic>Machine learning</topic><topic>Nanoparticles</topic><topic>Neural networks</topic><topic>p53 Protein</topic><topic>Raman spectra</topic><topic>Silicon</topic><topic>Silver</topic><topic>Target recognition</topic><topic>Training</topic><topic>Tumor suppressor genes</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Huayi</creatorcontrib><creatorcontrib>Wang, Houyu</creatorcontrib><creatorcontrib>Meng, Xinyu</creatorcontrib><creatorcontrib>Chen, Runzhi</creatorcontrib><creatorcontrib>Zhang, Yishu</creatorcontrib><creatorcontrib>Su, Yuanyuan</creatorcontrib><creatorcontrib>He, Yao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Huayi</au><au>Wang, Houyu</au><au>Meng, Xinyu</au><au>Chen, Runzhi</au><au>Zhang, Yishu</au><au>Su, Yuanyuan</au><au>He, Yao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Setting Up a Surface-Enhanced Raman Scattering Database for Artificial-Intelligence-Based Label-Free Discrimination of Tumor Suppressor Genes</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2018-12-18</date><risdate>2018</risdate><volume>90</volume><issue>24</issue><spage>14216</spage><epage>14221</epage><pages>14216-14221</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>The quality of input data in deep learning is tightly associated with the ultimate performance of the machine learner. Taking advantage of the unique merits of surface-enhanced Raman scattering (SERS) methodology in the collection and construction of a database (e.g., abundant intrinsic fingerprint information, noninvasive data acquisition process, strong anti-interfering ability, etc.), herein we set up a SERS-based database of deoxyribonucleic acid (DNA), suitable for artificial intelligence (AI)-based sensing applications. The database is collected and analyzed by silver nanoparticles (Ag NPs)-decorated silicon wafer (Ag NPs@Si) SERS chip, followed by training with a deep neural network (DNN). As proof-of-concept applications, three kinds of representative tumor suppressor genes, i.e., p16, p21, and p53 fragments, are readily discriminated in a label-free manner. Prominent and reproducible SERS spectra of these DNA molecules are collected and employed as input data for DNN learning and training, which enables selective discrimination of DNA target(s). The accuracy rate for the recognition of specific DNA target reached 90.28%.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30456938</pmid><doi>10.1021/acs.analchem.8b03080</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2058-275X</orcidid><orcidid>https://orcid.org/0000-0003-1672-4057</orcidid><orcidid>https://orcid.org/0000-0002-5134-9881</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2018-12, Vol.90 (24), p.14216-14221 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_2136062627 |
source | ACS Publications |
subjects | Artificial intelligence Artificial neural networks Chemistry Data acquisition Data acquisition systems Deoxyribonucleic acid DNA Genes Information processing Machine learning Nanoparticles Neural networks p53 Protein Raman spectra Silicon Silver Target recognition Training Tumor suppressor genes Tumors |
title | Setting Up a Surface-Enhanced Raman Scattering Database for Artificial-Intelligence-Based Label-Free Discrimination of Tumor Suppressor Genes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T18%3A57%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Setting%20Up%20a%20Surface-Enhanced%20Raman%20Scattering%20Database%20for%20Artificial-Intelligence-Based%20Label-Free%20Discrimination%20of%20Tumor%20Suppressor%20Genes&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Shi,%20Huayi&rft.date=2018-12-18&rft.volume=90&rft.issue=24&rft.spage=14216&rft.epage=14221&rft.pages=14216-14221&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.8b03080&rft_dat=%3Cproquest_cross%3E2136062627%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2164529229&rft_id=info:pmid/30456938&rfr_iscdi=true |