Setting Up a Surface-Enhanced Raman Scattering Database for Artificial-Intelligence-Based Label-Free Discrimination of Tumor Suppressor Genes

The quality of input data in deep learning is tightly associated with the ultimate performance of the machine learner. Taking advantage of the unique merits of surface-enhanced Raman scattering (SERS) methodology in the collection and construction of a database (e.g., abundant intrinsic fingerprint...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2018-12, Vol.90 (24), p.14216-14221
Hauptverfasser: Shi, Huayi, Wang, Houyu, Meng, Xinyu, Chen, Runzhi, Zhang, Yishu, Su, Yuanyuan, He, Yao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14221
container_issue 24
container_start_page 14216
container_title Analytical chemistry (Washington)
container_volume 90
creator Shi, Huayi
Wang, Houyu
Meng, Xinyu
Chen, Runzhi
Zhang, Yishu
Su, Yuanyuan
He, Yao
description The quality of input data in deep learning is tightly associated with the ultimate performance of the machine learner. Taking advantage of the unique merits of surface-enhanced Raman scattering (SERS) methodology in the collection and construction of a database (e.g., abundant intrinsic fingerprint information, noninvasive data acquisition process, strong anti-interfering ability, etc.), herein we set up a SERS-based database of deoxyribonucleic acid (DNA), suitable for artificial intelligence (AI)-based sensing applications. The database is collected and analyzed by silver nanoparticles (Ag NPs)-decorated silicon wafer (Ag NPs@Si) SERS chip, followed by training with a deep neural network (DNN). As proof-of-concept applications, three kinds of representative tumor suppressor genes, i.e., p16, p21, and p53 fragments, are readily discriminated in a label-free manner. Prominent and reproducible SERS spectra of these DNA molecules are collected and employed as input data for DNN learning and training, which enables selective discrimination of DNA target(s). The accuracy rate for the recognition of specific DNA target reached 90.28%.
doi_str_mv 10.1021/acs.analchem.8b03080
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2136062627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2136062627</sourcerecordid><originalsourceid>FETCH-LOGICAL-a442t-914cca2323a64d1b4b4b2afa38179d0336af6f96443cef60b6b432e965a446a43</originalsourceid><addsrcrecordid>eNp9kbtu2zAUhomgQeKkfYOiINCli5zDi2lpTHNrAAMF6mQWjqjDRIFEqSQ19CH6zqVhJ0OGggM5fP9PHn6MfRawFCDFBdq4RI-9faZhWTagoIQjthArCYUpS_mBLQBAFXINcMrOYnwBEAKEOWGnCvTKVKpcsL9bSqnzT_xx4si3c3Boqbjxz-gttfwXDuj51mJKFHbYNSZsMBJ3Y-CXIXWusx32xb1P1PfdE-VY8T0DLd9gQ31xG4j4dRdt6IbOY-pGz0fHH-YhF2znaQoUYz7ekaf4kR077CN9Ouzn7PH25uHqR7H5eXd_dbkpUGuZikpoa1EqqdDoVjQ6L4kOVSnWVQtKGXTGVUZrZckZaEyjlaTKrHLeoFbn7Nu-dwrj75liqof8wjwAehrnWEuhDBhp5DqjX9-hL-Mc8r_vKKNXspKyypTeUzaMMQZy9ZTnxfCnFlDvdNVZV_2qqz7oyrEvh_K5Gah9C736yQDsgV387eL_dv4Dq_Ok1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2164529229</pqid></control><display><type>article</type><title>Setting Up a Surface-Enhanced Raman Scattering Database for Artificial-Intelligence-Based Label-Free Discrimination of Tumor Suppressor Genes</title><source>ACS Publications</source><creator>Shi, Huayi ; Wang, Houyu ; Meng, Xinyu ; Chen, Runzhi ; Zhang, Yishu ; Su, Yuanyuan ; He, Yao</creator><creatorcontrib>Shi, Huayi ; Wang, Houyu ; Meng, Xinyu ; Chen, Runzhi ; Zhang, Yishu ; Su, Yuanyuan ; He, Yao</creatorcontrib><description>The quality of input data in deep learning is tightly associated with the ultimate performance of the machine learner. Taking advantage of the unique merits of surface-enhanced Raman scattering (SERS) methodology in the collection and construction of a database (e.g., abundant intrinsic fingerprint information, noninvasive data acquisition process, strong anti-interfering ability, etc.), herein we set up a SERS-based database of deoxyribonucleic acid (DNA), suitable for artificial intelligence (AI)-based sensing applications. The database is collected and analyzed by silver nanoparticles (Ag NPs)-decorated silicon wafer (Ag NPs@Si) SERS chip, followed by training with a deep neural network (DNN). As proof-of-concept applications, three kinds of representative tumor suppressor genes, i.e., p16, p21, and p53 fragments, are readily discriminated in a label-free manner. Prominent and reproducible SERS spectra of these DNA molecules are collected and employed as input data for DNN learning and training, which enables selective discrimination of DNA target(s). The accuracy rate for the recognition of specific DNA target reached 90.28%.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.8b03080</identifier><identifier>PMID: 30456938</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Artificial intelligence ; Artificial neural networks ; Chemistry ; Data acquisition ; Data acquisition systems ; Deoxyribonucleic acid ; DNA ; Genes ; Information processing ; Machine learning ; Nanoparticles ; Neural networks ; p53 Protein ; Raman spectra ; Silicon ; Silver ; Target recognition ; Training ; Tumor suppressor genes ; Tumors</subject><ispartof>Analytical chemistry (Washington), 2018-12, Vol.90 (24), p.14216-14221</ispartof><rights>Copyright American Chemical Society Dec 18, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a442t-914cca2323a64d1b4b4b2afa38179d0336af6f96443cef60b6b432e965a446a43</citedby><cites>FETCH-LOGICAL-a442t-914cca2323a64d1b4b4b2afa38179d0336af6f96443cef60b6b432e965a446a43</cites><orcidid>0000-0003-2058-275X ; 0000-0003-1672-4057 ; 0000-0002-5134-9881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.8b03080$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.8b03080$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30456938$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Huayi</creatorcontrib><creatorcontrib>Wang, Houyu</creatorcontrib><creatorcontrib>Meng, Xinyu</creatorcontrib><creatorcontrib>Chen, Runzhi</creatorcontrib><creatorcontrib>Zhang, Yishu</creatorcontrib><creatorcontrib>Su, Yuanyuan</creatorcontrib><creatorcontrib>He, Yao</creatorcontrib><title>Setting Up a Surface-Enhanced Raman Scattering Database for Artificial-Intelligence-Based Label-Free Discrimination of Tumor Suppressor Genes</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>The quality of input data in deep learning is tightly associated with the ultimate performance of the machine learner. Taking advantage of the unique merits of surface-enhanced Raman scattering (SERS) methodology in the collection and construction of a database (e.g., abundant intrinsic fingerprint information, noninvasive data acquisition process, strong anti-interfering ability, etc.), herein we set up a SERS-based database of deoxyribonucleic acid (DNA), suitable for artificial intelligence (AI)-based sensing applications. The database is collected and analyzed by silver nanoparticles (Ag NPs)-decorated silicon wafer (Ag NPs@Si) SERS chip, followed by training with a deep neural network (DNN). As proof-of-concept applications, three kinds of representative tumor suppressor genes, i.e., p16, p21, and p53 fragments, are readily discriminated in a label-free manner. Prominent and reproducible SERS spectra of these DNA molecules are collected and employed as input data for DNN learning and training, which enables selective discrimination of DNA target(s). The accuracy rate for the recognition of specific DNA target reached 90.28%.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Chemistry</subject><subject>Data acquisition</subject><subject>Data acquisition systems</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Genes</subject><subject>Information processing</subject><subject>Machine learning</subject><subject>Nanoparticles</subject><subject>Neural networks</subject><subject>p53 Protein</subject><subject>Raman spectra</subject><subject>Silicon</subject><subject>Silver</subject><subject>Target recognition</subject><subject>Training</subject><subject>Tumor suppressor genes</subject><subject>Tumors</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kbtu2zAUhomgQeKkfYOiINCli5zDi2lpTHNrAAMF6mQWjqjDRIFEqSQ19CH6zqVhJ0OGggM5fP9PHn6MfRawFCDFBdq4RI-9faZhWTagoIQjthArCYUpS_mBLQBAFXINcMrOYnwBEAKEOWGnCvTKVKpcsL9bSqnzT_xx4si3c3Boqbjxz-gttfwXDuj51mJKFHbYNSZsMBJ3Y-CXIXWusx32xb1P1PfdE-VY8T0DLd9gQ31xG4j4dRdt6IbOY-pGz0fHH-YhF2znaQoUYz7ekaf4kR077CN9Ouzn7PH25uHqR7H5eXd_dbkpUGuZikpoa1EqqdDoVjQ6L4kOVSnWVQtKGXTGVUZrZckZaEyjlaTKrHLeoFbn7Nu-dwrj75liqof8wjwAehrnWEuhDBhp5DqjX9-hL-Mc8r_vKKNXspKyypTeUzaMMQZy9ZTnxfCnFlDvdNVZV_2qqz7oyrEvh_K5Gah9C736yQDsgV387eL_dv4Dq_Ok1g</recordid><startdate>20181218</startdate><enddate>20181218</enddate><creator>Shi, Huayi</creator><creator>Wang, Houyu</creator><creator>Meng, Xinyu</creator><creator>Chen, Runzhi</creator><creator>Zhang, Yishu</creator><creator>Su, Yuanyuan</creator><creator>He, Yao</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2058-275X</orcidid><orcidid>https://orcid.org/0000-0003-1672-4057</orcidid><orcidid>https://orcid.org/0000-0002-5134-9881</orcidid></search><sort><creationdate>20181218</creationdate><title>Setting Up a Surface-Enhanced Raman Scattering Database for Artificial-Intelligence-Based Label-Free Discrimination of Tumor Suppressor Genes</title><author>Shi, Huayi ; Wang, Houyu ; Meng, Xinyu ; Chen, Runzhi ; Zhang, Yishu ; Su, Yuanyuan ; He, Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a442t-914cca2323a64d1b4b4b2afa38179d0336af6f96443cef60b6b432e965a446a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Chemistry</topic><topic>Data acquisition</topic><topic>Data acquisition systems</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Genes</topic><topic>Information processing</topic><topic>Machine learning</topic><topic>Nanoparticles</topic><topic>Neural networks</topic><topic>p53 Protein</topic><topic>Raman spectra</topic><topic>Silicon</topic><topic>Silver</topic><topic>Target recognition</topic><topic>Training</topic><topic>Tumor suppressor genes</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Huayi</creatorcontrib><creatorcontrib>Wang, Houyu</creatorcontrib><creatorcontrib>Meng, Xinyu</creatorcontrib><creatorcontrib>Chen, Runzhi</creatorcontrib><creatorcontrib>Zhang, Yishu</creatorcontrib><creatorcontrib>Su, Yuanyuan</creatorcontrib><creatorcontrib>He, Yao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Huayi</au><au>Wang, Houyu</au><au>Meng, Xinyu</au><au>Chen, Runzhi</au><au>Zhang, Yishu</au><au>Su, Yuanyuan</au><au>He, Yao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Setting Up a Surface-Enhanced Raman Scattering Database for Artificial-Intelligence-Based Label-Free Discrimination of Tumor Suppressor Genes</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2018-12-18</date><risdate>2018</risdate><volume>90</volume><issue>24</issue><spage>14216</spage><epage>14221</epage><pages>14216-14221</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>The quality of input data in deep learning is tightly associated with the ultimate performance of the machine learner. Taking advantage of the unique merits of surface-enhanced Raman scattering (SERS) methodology in the collection and construction of a database (e.g., abundant intrinsic fingerprint information, noninvasive data acquisition process, strong anti-interfering ability, etc.), herein we set up a SERS-based database of deoxyribonucleic acid (DNA), suitable for artificial intelligence (AI)-based sensing applications. The database is collected and analyzed by silver nanoparticles (Ag NPs)-decorated silicon wafer (Ag NPs@Si) SERS chip, followed by training with a deep neural network (DNN). As proof-of-concept applications, three kinds of representative tumor suppressor genes, i.e., p16, p21, and p53 fragments, are readily discriminated in a label-free manner. Prominent and reproducible SERS spectra of these DNA molecules are collected and employed as input data for DNN learning and training, which enables selective discrimination of DNA target(s). The accuracy rate for the recognition of specific DNA target reached 90.28%.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30456938</pmid><doi>10.1021/acs.analchem.8b03080</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2058-275X</orcidid><orcidid>https://orcid.org/0000-0003-1672-4057</orcidid><orcidid>https://orcid.org/0000-0002-5134-9881</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2018-12, Vol.90 (24), p.14216-14221
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2136062627
source ACS Publications
subjects Artificial intelligence
Artificial neural networks
Chemistry
Data acquisition
Data acquisition systems
Deoxyribonucleic acid
DNA
Genes
Information processing
Machine learning
Nanoparticles
Neural networks
p53 Protein
Raman spectra
Silicon
Silver
Target recognition
Training
Tumor suppressor genes
Tumors
title Setting Up a Surface-Enhanced Raman Scattering Database for Artificial-Intelligence-Based Label-Free Discrimination of Tumor Suppressor Genes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T18%3A57%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Setting%20Up%20a%20Surface-Enhanced%20Raman%20Scattering%20Database%20for%20Artificial-Intelligence-Based%20Label-Free%20Discrimination%20of%20Tumor%20Suppressor%20Genes&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Shi,%20Huayi&rft.date=2018-12-18&rft.volume=90&rft.issue=24&rft.spage=14216&rft.epage=14221&rft.pages=14216-14221&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.8b03080&rft_dat=%3Cproquest_cross%3E2136062627%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2164529229&rft_id=info:pmid/30456938&rfr_iscdi=true