MRI analysis to map interstitial flow in the brain tumor microenvironment

Glioblastoma (GBM), a highly aggressive form of brain tumor, is a disease marked by extensive invasion into the surrounding brain. Interstitial fluid flow (IFF), or the movement of fluid within the spaces between cells, has been linked to increased invasion of GBM cells. Better characterization of I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:APL bioengineering 2018-09, Vol.2 (3), p.031905-031905-15
Hauptverfasser: Kingsmore, Kathryn M., Vaccari, Andrea, Abler, Daniel, Cui, Sophia X., Epstein, Frederick H., Rockne, Russell C., Acton, Scott T., Munson, Jennifer M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 031905-15
container_issue 3
container_start_page 031905
container_title APL bioengineering
container_volume 2
creator Kingsmore, Kathryn M.
Vaccari, Andrea
Abler, Daniel
Cui, Sophia X.
Epstein, Frederick H.
Rockne, Russell C.
Acton, Scott T.
Munson, Jennifer M.
description Glioblastoma (GBM), a highly aggressive form of brain tumor, is a disease marked by extensive invasion into the surrounding brain. Interstitial fluid flow (IFF), or the movement of fluid within the spaces between cells, has been linked to increased invasion of GBM cells. Better characterization of IFF could elucidate underlying mechanisms driving this invasion in vivo. Here, we develop a technique to non-invasively measure interstitial flow velocities in the glioma microenvironment of mice using dynamic contrast-enhanced magnetic resonance imaging (MRI), a common clinical technique. Using our in vitro model as a phantom “tumor” system and in silico models of velocity vector fields, we show we can measure average velocities and accurately reconstruct velocity directions. With our combined MR and analysis method, we show that velocity magnitudes are similar across four human GBM cell line xenograft models and the direction of fluid flow is heterogeneous within and around the tumors, and not always in the outward direction. These values were not linked to the tumor size. Finally, we compare our flow velocity magnitudes and the direction of flow to a classical marker of vessel leakage and bulk fluid drainage, Evans blue. With these data, we validate its use as a marker of high and low IFF rates and IFF in the outward direction from the tumor border in implanted glioma models. These methods show, for the first time, the nature of interstitial fluid flow in models of glioma using a technique that is translatable to clinical and preclinical models currently using contrast-enhanced MRI.
doi_str_mv 10.1063/1.5023503
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2136056401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a94681fbb466477a8d647d8991ea6c29</doaj_id><sourcerecordid>2136056401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-a9cac6b535953e859dd3c94c9f2d171bb3bf852e6eae80781031d087194cae693</originalsourceid><addsrcrecordid>eNp9kU1rVDEUhoNYbGm78A_IXaowNd8fG0GK1YGKILoO5ya5bcq9N2OSGem_N9OZfi10dQ4nD0-S8yL0muAzgiX7QM4Epkxg9gIdUa7YgmqlXj7pD9FpKTcYY0qYMRS_QocMcyEZZ0do-e3HsoMZxtsSS1dTN8Gqi3MNudRYI4zdMKY_bdLV69D1Gbbdekq5m6LLKcybmNM8hbmeoIMBxhJO9_UY_br4_PP86-Ly-5fl-afLhRNK1QUYB072ggkjWNDCeM-c4c4M1BNF-p71gxY0yABBY6UJZsRjrUhjIEjDjtFy5_UJbuwqxwnyrU0Q7d0g5SsLuUY3BguGS02GvudScqVA-1a8NoYEkI5uXR93rtW6n4J37RsZxmfS5ydzvLZXaWMlZVpy3gRv94Kcfq9DqXaKxYVxhDmkdbFt5RILyTFp6Lsd2tZWSg7DwzUE222Slth9ko198_RdD-R9bg14vwOKixVqTPN_bf-ENyk_gnblB_YXLXy0dA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2136056401</pqid></control><display><type>article</type><title>MRI analysis to map interstitial flow in the brain tumor microenvironment</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Kingsmore, Kathryn M. ; Vaccari, Andrea ; Abler, Daniel ; Cui, Sophia X. ; Epstein, Frederick H. ; Rockne, Russell C. ; Acton, Scott T. ; Munson, Jennifer M.</creator><creatorcontrib>Kingsmore, Kathryn M. ; Vaccari, Andrea ; Abler, Daniel ; Cui, Sophia X. ; Epstein, Frederick H. ; Rockne, Russell C. ; Acton, Scott T. ; Munson, Jennifer M.</creatorcontrib><description>Glioblastoma (GBM), a highly aggressive form of brain tumor, is a disease marked by extensive invasion into the surrounding brain. Interstitial fluid flow (IFF), or the movement of fluid within the spaces between cells, has been linked to increased invasion of GBM cells. Better characterization of IFF could elucidate underlying mechanisms driving this invasion in vivo. Here, we develop a technique to non-invasively measure interstitial flow velocities in the glioma microenvironment of mice using dynamic contrast-enhanced magnetic resonance imaging (MRI), a common clinical technique. Using our in vitro model as a phantom “tumor” system and in silico models of velocity vector fields, we show we can measure average velocities and accurately reconstruct velocity directions. With our combined MR and analysis method, we show that velocity magnitudes are similar across four human GBM cell line xenograft models and the direction of fluid flow is heterogeneous within and around the tumors, and not always in the outward direction. These values were not linked to the tumor size. Finally, we compare our flow velocity magnitudes and the direction of flow to a classical marker of vessel leakage and bulk fluid drainage, Evans blue. With these data, we validate its use as a marker of high and low IFF rates and IFF in the outward direction from the tumor border in implanted glioma models. These methods show, for the first time, the nature of interstitial fluid flow in models of glioma using a technique that is translatable to clinical and preclinical models currently using contrast-enhanced MRI.</description><identifier>ISSN: 2473-2877</identifier><identifier>EISSN: 2473-2877</identifier><identifier>DOI: 10.1063/1.5023503</identifier><identifier>PMID: 30456343</identifier><identifier>CODEN: ABPID9</identifier><language>eng</language><publisher>United States: AIP Publishing LLC</publisher><subject>Special Topic: Bioengineering of Cancer</subject><ispartof>APL bioengineering, 2018-09, Vol.2 (3), p.031905-031905-15</ispartof><rights>Author(s)</rights><rights>2018 Author(s). 2018 Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-a9cac6b535953e859dd3c94c9f2d171bb3bf852e6eae80781031d087194cae693</citedby><cites>FETCH-LOGICAL-c577t-a9cac6b535953e859dd3c94c9f2d171bb3bf852e6eae80781031d087194cae693</cites><orcidid>0000-0003-3288-1255 ; 0000-0002-9477-1505 ; 0000-0002-3356-326X ; 0000-0002-5133-4903 ; 0000-0003-1776-5985 ; 0000-0002-1557-159X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6238644/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6238644/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30456343$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kingsmore, Kathryn M.</creatorcontrib><creatorcontrib>Vaccari, Andrea</creatorcontrib><creatorcontrib>Abler, Daniel</creatorcontrib><creatorcontrib>Cui, Sophia X.</creatorcontrib><creatorcontrib>Epstein, Frederick H.</creatorcontrib><creatorcontrib>Rockne, Russell C.</creatorcontrib><creatorcontrib>Acton, Scott T.</creatorcontrib><creatorcontrib>Munson, Jennifer M.</creatorcontrib><title>MRI analysis to map interstitial flow in the brain tumor microenvironment</title><title>APL bioengineering</title><addtitle>APL Bioeng</addtitle><description>Glioblastoma (GBM), a highly aggressive form of brain tumor, is a disease marked by extensive invasion into the surrounding brain. Interstitial fluid flow (IFF), or the movement of fluid within the spaces between cells, has been linked to increased invasion of GBM cells. Better characterization of IFF could elucidate underlying mechanisms driving this invasion in vivo. Here, we develop a technique to non-invasively measure interstitial flow velocities in the glioma microenvironment of mice using dynamic contrast-enhanced magnetic resonance imaging (MRI), a common clinical technique. Using our in vitro model as a phantom “tumor” system and in silico models of velocity vector fields, we show we can measure average velocities and accurately reconstruct velocity directions. With our combined MR and analysis method, we show that velocity magnitudes are similar across four human GBM cell line xenograft models and the direction of fluid flow is heterogeneous within and around the tumors, and not always in the outward direction. These values were not linked to the tumor size. Finally, we compare our flow velocity magnitudes and the direction of flow to a classical marker of vessel leakage and bulk fluid drainage, Evans blue. With these data, we validate its use as a marker of high and low IFF rates and IFF in the outward direction from the tumor border in implanted glioma models. These methods show, for the first time, the nature of interstitial fluid flow in models of glioma using a technique that is translatable to clinical and preclinical models currently using contrast-enhanced MRI.</description><subject>Special Topic: Bioengineering of Cancer</subject><issn>2473-2877</issn><issn>2473-2877</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU1rVDEUhoNYbGm78A_IXaowNd8fG0GK1YGKILoO5ya5bcq9N2OSGem_N9OZfi10dQ4nD0-S8yL0muAzgiX7QM4Epkxg9gIdUa7YgmqlXj7pD9FpKTcYY0qYMRS_QocMcyEZZ0do-e3HsoMZxtsSS1dTN8Gqi3MNudRYI4zdMKY_bdLV69D1Gbbdekq5m6LLKcybmNM8hbmeoIMBxhJO9_UY_br4_PP86-Ly-5fl-afLhRNK1QUYB072ggkjWNDCeM-c4c4M1BNF-p71gxY0yABBY6UJZsRjrUhjIEjDjtFy5_UJbuwqxwnyrU0Q7d0g5SsLuUY3BguGS02GvudScqVA-1a8NoYEkI5uXR93rtW6n4J37RsZxmfS5ydzvLZXaWMlZVpy3gRv94Kcfq9DqXaKxYVxhDmkdbFt5RILyTFp6Lsd2tZWSg7DwzUE222Slth9ko198_RdD-R9bg14vwOKixVqTPN_bf-ENyk_gnblB_YXLXy0dA</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Kingsmore, Kathryn M.</creator><creator>Vaccari, Andrea</creator><creator>Abler, Daniel</creator><creator>Cui, Sophia X.</creator><creator>Epstein, Frederick H.</creator><creator>Rockne, Russell C.</creator><creator>Acton, Scott T.</creator><creator>Munson, Jennifer M.</creator><general>AIP Publishing LLC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3288-1255</orcidid><orcidid>https://orcid.org/0000-0002-9477-1505</orcidid><orcidid>https://orcid.org/0000-0002-3356-326X</orcidid><orcidid>https://orcid.org/0000-0002-5133-4903</orcidid><orcidid>https://orcid.org/0000-0003-1776-5985</orcidid><orcidid>https://orcid.org/0000-0002-1557-159X</orcidid></search><sort><creationdate>20180901</creationdate><title>MRI analysis to map interstitial flow in the brain tumor microenvironment</title><author>Kingsmore, Kathryn M. ; Vaccari, Andrea ; Abler, Daniel ; Cui, Sophia X. ; Epstein, Frederick H. ; Rockne, Russell C. ; Acton, Scott T. ; Munson, Jennifer M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-a9cac6b535953e859dd3c94c9f2d171bb3bf852e6eae80781031d087194cae693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Special Topic: Bioengineering of Cancer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kingsmore, Kathryn M.</creatorcontrib><creatorcontrib>Vaccari, Andrea</creatorcontrib><creatorcontrib>Abler, Daniel</creatorcontrib><creatorcontrib>Cui, Sophia X.</creatorcontrib><creatorcontrib>Epstein, Frederick H.</creatorcontrib><creatorcontrib>Rockne, Russell C.</creatorcontrib><creatorcontrib>Acton, Scott T.</creatorcontrib><creatorcontrib>Munson, Jennifer M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>APL bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kingsmore, Kathryn M.</au><au>Vaccari, Andrea</au><au>Abler, Daniel</au><au>Cui, Sophia X.</au><au>Epstein, Frederick H.</au><au>Rockne, Russell C.</au><au>Acton, Scott T.</au><au>Munson, Jennifer M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MRI analysis to map interstitial flow in the brain tumor microenvironment</atitle><jtitle>APL bioengineering</jtitle><addtitle>APL Bioeng</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>2</volume><issue>3</issue><spage>031905</spage><epage>031905-15</epage><pages>031905-031905-15</pages><issn>2473-2877</issn><eissn>2473-2877</eissn><coden>ABPID9</coden><abstract>Glioblastoma (GBM), a highly aggressive form of brain tumor, is a disease marked by extensive invasion into the surrounding brain. Interstitial fluid flow (IFF), or the movement of fluid within the spaces between cells, has been linked to increased invasion of GBM cells. Better characterization of IFF could elucidate underlying mechanisms driving this invasion in vivo. Here, we develop a technique to non-invasively measure interstitial flow velocities in the glioma microenvironment of mice using dynamic contrast-enhanced magnetic resonance imaging (MRI), a common clinical technique. Using our in vitro model as a phantom “tumor” system and in silico models of velocity vector fields, we show we can measure average velocities and accurately reconstruct velocity directions. With our combined MR and analysis method, we show that velocity magnitudes are similar across four human GBM cell line xenograft models and the direction of fluid flow is heterogeneous within and around the tumors, and not always in the outward direction. These values were not linked to the tumor size. Finally, we compare our flow velocity magnitudes and the direction of flow to a classical marker of vessel leakage and bulk fluid drainage, Evans blue. With these data, we validate its use as a marker of high and low IFF rates and IFF in the outward direction from the tumor border in implanted glioma models. These methods show, for the first time, the nature of interstitial fluid flow in models of glioma using a technique that is translatable to clinical and preclinical models currently using contrast-enhanced MRI.</abstract><cop>United States</cop><pub>AIP Publishing LLC</pub><pmid>30456343</pmid><doi>10.1063/1.5023503</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3288-1255</orcidid><orcidid>https://orcid.org/0000-0002-9477-1505</orcidid><orcidid>https://orcid.org/0000-0002-3356-326X</orcidid><orcidid>https://orcid.org/0000-0002-5133-4903</orcidid><orcidid>https://orcid.org/0000-0003-1776-5985</orcidid><orcidid>https://orcid.org/0000-0002-1557-159X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2473-2877
ispartof APL bioengineering, 2018-09, Vol.2 (3), p.031905-031905-15
issn 2473-2877
2473-2877
language eng
recordid cdi_proquest_miscellaneous_2136056401
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Special Topic: Bioengineering of Cancer
title MRI analysis to map interstitial flow in the brain tumor microenvironment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T18%3A00%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MRI%20analysis%20to%20map%20interstitial%20flow%20in%20the%20brain%20tumor%20microenvironment&rft.jtitle=APL%20bioengineering&rft.au=Kingsmore,%20Kathryn%20M.&rft.date=2018-09-01&rft.volume=2&rft.issue=3&rft.spage=031905&rft.epage=031905-15&rft.pages=031905-031905-15&rft.issn=2473-2877&rft.eissn=2473-2877&rft.coden=ABPID9&rft_id=info:doi/10.1063/1.5023503&rft_dat=%3Cproquest_pubme%3E2136056401%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2136056401&rft_id=info:pmid/30456343&rft_doaj_id=oai_doaj_org_article_a94681fbb466477a8d647d8991ea6c29&rfr_iscdi=true