Effect of image reconstruction algorithms on volumetric and radiomic parameters of coronary plaques

Volumetric and radiomic analysis of atherosclerotic plaques on coronary CT angiography have been shown to predict high-risk plaque morphology and to predict patient outcomes. However, there is limited information whether image reconstruction algorithms and preprocessing steps (type of binning, numbe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cardiovascular computed tomography 2019-11, Vol.13 (6), p.325-330
Hauptverfasser: Kolossváry, Márton, Szilveszter, Bálint, Karády, Júlia, Drobni, Zsófia Dóra, Merkely, Béla, Maurovich-Horvat, Pál
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 330
container_issue 6
container_start_page 325
container_title Journal of cardiovascular computed tomography
container_volume 13
creator Kolossváry, Márton
Szilveszter, Bálint
Karády, Júlia
Drobni, Zsófia Dóra
Merkely, Béla
Maurovich-Horvat, Pál
description Volumetric and radiomic analysis of atherosclerotic plaques on coronary CT angiography have been shown to predict high-risk plaque morphology and to predict patient outcomes. However, there is limited information whether image reconstruction algorithms and preprocessing steps (type of binning, number of bins used for discretization) may influence parameter values. We retrospectively identified 60 coronary lesions on coronary CT angiography (CTA). All images were reconstructed using filtered back projection (FBP), hybrid (HIR) and model-based (MIR) iterative reconstruction. Plaques were segmented manually on HIR images and copied to FBP and MIR images to ensure identical voxels were analyzed. Overall, 4 volumetric and 169 radiomic parameters were calculated. Intra-class correlation coefficient (ICC) was used to assess reproducibility between image reconstructions, while linear regression analysis was used to assess the effect of preprocessing steps done before calculating radiomic metrics. All volumetric and radiomic metrics had ICC>0.90 except for first-order statistics: mode, harmonic mean, minimum (0.45, 0.76, 0.84; respectively) and gray level co-occurrence (GLCM) parameters: inverse difference sum and sum variance (0.01, 0.04; respectively). Among GLCM parameters 90% were significantly affected by the type of binning and 100% by the number of bins. In case of gray level run length matrix parameters 100% of metrics were affected by both preprocessing steps. Volumetric and radiomic statistics are robust to image reconstruction algorithms. However, all radiomic variables were affected by preprocessing steps therefore, showing the need for standardization before being implemented into everyday clinical practice.
doi_str_mv 10.1016/j.jcct.2018.11.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2135636638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1934592518303708</els_id><sourcerecordid>2135636638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-cd2e2d4fa13b189ab9e022f9ffd666f4d1f1976b496fd34cdb579f940a15b54c3</originalsourceid><addsrcrecordid>eNp9kE9r3DAQxUVJ6G7SfoEego-92NHYsmxBLyUkaSCQSwq9CVkapVpsayPJC_n2kdltjznNH968x_wI-Qa0Agr8elfttE5VTaGvACpK2Seyhb7jZc_hz1nuRcPKVtTthlzEuKO07YD2n8mmoYx1gokt0bfWok6Ft4Wb1AsWAbWfYwqLTs7PhRpffHDp7xSLPB38uEyYgtOFmk0RlHF-ysNeBZX3GOJqpH3wswpvxX5UrwvGL-TcqjHi11O9JL_vbp9vfpWPT_cPNz8fS920PJXa1FgbZhU0A_RCDQJpXVthreGcW2bAguj4wAS3pmHaDG0nrGBUQTu0TDeX5PvRdx_8mpvk5KLGcVQz-iXKGnJOw3nTZ2l9lOrgYwxo5T7k_8ObBCpXuHInV7hyhSsBZIabj65O_sswofl_8o9mFvw4CjB_eXAYZNQOZ43GZaxJGu8-8n8HgRuNhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2135636638</pqid></control><display><type>article</type><title>Effect of image reconstruction algorithms on volumetric and radiomic parameters of coronary plaques</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Kolossváry, Márton ; Szilveszter, Bálint ; Karády, Júlia ; Drobni, Zsófia Dóra ; Merkely, Béla ; Maurovich-Horvat, Pál</creator><creatorcontrib>Kolossváry, Márton ; Szilveszter, Bálint ; Karády, Júlia ; Drobni, Zsófia Dóra ; Merkely, Béla ; Maurovich-Horvat, Pál</creatorcontrib><description>Volumetric and radiomic analysis of atherosclerotic plaques on coronary CT angiography have been shown to predict high-risk plaque morphology and to predict patient outcomes. However, there is limited information whether image reconstruction algorithms and preprocessing steps (type of binning, number of bins used for discretization) may influence parameter values. We retrospectively identified 60 coronary lesions on coronary CT angiography (CTA). All images were reconstructed using filtered back projection (FBP), hybrid (HIR) and model-based (MIR) iterative reconstruction. Plaques were segmented manually on HIR images and copied to FBP and MIR images to ensure identical voxels were analyzed. Overall, 4 volumetric and 169 radiomic parameters were calculated. Intra-class correlation coefficient (ICC) was used to assess reproducibility between image reconstructions, while linear regression analysis was used to assess the effect of preprocessing steps done before calculating radiomic metrics. All volumetric and radiomic metrics had ICC&gt;0.90 except for first-order statistics: mode, harmonic mean, minimum (0.45, 0.76, 0.84; respectively) and gray level co-occurrence (GLCM) parameters: inverse difference sum and sum variance (0.01, 0.04; respectively). Among GLCM parameters 90% were significantly affected by the type of binning and 100% by the number of bins. In case of gray level run length matrix parameters 100% of metrics were affected by both preprocessing steps. Volumetric and radiomic statistics are robust to image reconstruction algorithms. However, all radiomic variables were affected by preprocessing steps therefore, showing the need for standardization before being implemented into everyday clinical practice.</description><identifier>ISSN: 1934-5925</identifier><identifier>EISSN: 1876-861X</identifier><identifier>DOI: 10.1016/j.jcct.2018.11.004</identifier><identifier>PMID: 30447949</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Aged ; Algorithms ; Computed Tomography Angiography - methods ; Computer-assisted image analysis ; Coronary Angiography - methods ; Coronary Artery Disease - diagnostic imaging ; Coronary atherosclerosis ; Coronary Vessels - diagnostic imaging ; Female ; Humans ; Image reconstruction ; Male ; Middle Aged ; Multidetector Computed Tomography - methods ; Multislice computed tomography ; Plaque, Atherosclerotic ; Predictive Value of Tests ; Radiographic Image Interpretation, Computer-Assisted - methods ; Reproducibility of Results ; Retrospective Studies</subject><ispartof>Journal of cardiovascular computed tomography, 2019-11, Vol.13 (6), p.325-330</ispartof><rights>2019 Society of Cardiovascular Computed Tomography</rights><rights>Copyright © 2019 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-cd2e2d4fa13b189ab9e022f9ffd666f4d1f1976b496fd34cdb579f940a15b54c3</citedby><cites>FETCH-LOGICAL-c356t-cd2e2d4fa13b189ab9e022f9ffd666f4d1f1976b496fd34cdb579f940a15b54c3</cites><orcidid>0000-0003-0885-736X ; 0000-0002-6640-6260</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcct.2018.11.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30447949$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kolossváry, Márton</creatorcontrib><creatorcontrib>Szilveszter, Bálint</creatorcontrib><creatorcontrib>Karády, Júlia</creatorcontrib><creatorcontrib>Drobni, Zsófia Dóra</creatorcontrib><creatorcontrib>Merkely, Béla</creatorcontrib><creatorcontrib>Maurovich-Horvat, Pál</creatorcontrib><title>Effect of image reconstruction algorithms on volumetric and radiomic parameters of coronary plaques</title><title>Journal of cardiovascular computed tomography</title><addtitle>J Cardiovasc Comput Tomogr</addtitle><description>Volumetric and radiomic analysis of atherosclerotic plaques on coronary CT angiography have been shown to predict high-risk plaque morphology and to predict patient outcomes. However, there is limited information whether image reconstruction algorithms and preprocessing steps (type of binning, number of bins used for discretization) may influence parameter values. We retrospectively identified 60 coronary lesions on coronary CT angiography (CTA). All images were reconstructed using filtered back projection (FBP), hybrid (HIR) and model-based (MIR) iterative reconstruction. Plaques were segmented manually on HIR images and copied to FBP and MIR images to ensure identical voxels were analyzed. Overall, 4 volumetric and 169 radiomic parameters were calculated. Intra-class correlation coefficient (ICC) was used to assess reproducibility between image reconstructions, while linear regression analysis was used to assess the effect of preprocessing steps done before calculating radiomic metrics. All volumetric and radiomic metrics had ICC&gt;0.90 except for first-order statistics: mode, harmonic mean, minimum (0.45, 0.76, 0.84; respectively) and gray level co-occurrence (GLCM) parameters: inverse difference sum and sum variance (0.01, 0.04; respectively). Among GLCM parameters 90% were significantly affected by the type of binning and 100% by the number of bins. In case of gray level run length matrix parameters 100% of metrics were affected by both preprocessing steps. Volumetric and radiomic statistics are robust to image reconstruction algorithms. However, all radiomic variables were affected by preprocessing steps therefore, showing the need for standardization before being implemented into everyday clinical practice.</description><subject>Aged</subject><subject>Algorithms</subject><subject>Computed Tomography Angiography - methods</subject><subject>Computer-assisted image analysis</subject><subject>Coronary Angiography - methods</subject><subject>Coronary Artery Disease - diagnostic imaging</subject><subject>Coronary atherosclerosis</subject><subject>Coronary Vessels - diagnostic imaging</subject><subject>Female</subject><subject>Humans</subject><subject>Image reconstruction</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Multidetector Computed Tomography - methods</subject><subject>Multislice computed tomography</subject><subject>Plaque, Atherosclerotic</subject><subject>Predictive Value of Tests</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Reproducibility of Results</subject><subject>Retrospective Studies</subject><issn>1934-5925</issn><issn>1876-861X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE9r3DAQxUVJ6G7SfoEego-92NHYsmxBLyUkaSCQSwq9CVkapVpsayPJC_n2kdltjznNH968x_wI-Qa0Agr8elfttE5VTaGvACpK2Seyhb7jZc_hz1nuRcPKVtTthlzEuKO07YD2n8mmoYx1gokt0bfWok6Ft4Wb1AsWAbWfYwqLTs7PhRpffHDp7xSLPB38uEyYgtOFmk0RlHF-ysNeBZX3GOJqpH3wswpvxX5UrwvGL-TcqjHi11O9JL_vbp9vfpWPT_cPNz8fS920PJXa1FgbZhU0A_RCDQJpXVthreGcW2bAguj4wAS3pmHaDG0nrGBUQTu0TDeX5PvRdx_8mpvk5KLGcVQz-iXKGnJOw3nTZ2l9lOrgYwxo5T7k_8ObBCpXuHInV7hyhSsBZIabj65O_sswofl_8o9mFvw4CjB_eXAYZNQOZ43GZaxJGu8-8n8HgRuNhg</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Kolossváry, Márton</creator><creator>Szilveszter, Bálint</creator><creator>Karády, Júlia</creator><creator>Drobni, Zsófia Dóra</creator><creator>Merkely, Béla</creator><creator>Maurovich-Horvat, Pál</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0885-736X</orcidid><orcidid>https://orcid.org/0000-0002-6640-6260</orcidid></search><sort><creationdate>201911</creationdate><title>Effect of image reconstruction algorithms on volumetric and radiomic parameters of coronary plaques</title><author>Kolossváry, Márton ; Szilveszter, Bálint ; Karády, Júlia ; Drobni, Zsófia Dóra ; Merkely, Béla ; Maurovich-Horvat, Pál</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-cd2e2d4fa13b189ab9e022f9ffd666f4d1f1976b496fd34cdb579f940a15b54c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aged</topic><topic>Algorithms</topic><topic>Computed Tomography Angiography - methods</topic><topic>Computer-assisted image analysis</topic><topic>Coronary Angiography - methods</topic><topic>Coronary Artery Disease - diagnostic imaging</topic><topic>Coronary atherosclerosis</topic><topic>Coronary Vessels - diagnostic imaging</topic><topic>Female</topic><topic>Humans</topic><topic>Image reconstruction</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Multidetector Computed Tomography - methods</topic><topic>Multislice computed tomography</topic><topic>Plaque, Atherosclerotic</topic><topic>Predictive Value of Tests</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Reproducibility of Results</topic><topic>Retrospective Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kolossváry, Márton</creatorcontrib><creatorcontrib>Szilveszter, Bálint</creatorcontrib><creatorcontrib>Karády, Júlia</creatorcontrib><creatorcontrib>Drobni, Zsófia Dóra</creatorcontrib><creatorcontrib>Merkely, Béla</creatorcontrib><creatorcontrib>Maurovich-Horvat, Pál</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cardiovascular computed tomography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kolossváry, Márton</au><au>Szilveszter, Bálint</au><au>Karády, Júlia</au><au>Drobni, Zsófia Dóra</au><au>Merkely, Béla</au><au>Maurovich-Horvat, Pál</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of image reconstruction algorithms on volumetric and radiomic parameters of coronary plaques</atitle><jtitle>Journal of cardiovascular computed tomography</jtitle><addtitle>J Cardiovasc Comput Tomogr</addtitle><date>2019-11</date><risdate>2019</risdate><volume>13</volume><issue>6</issue><spage>325</spage><epage>330</epage><pages>325-330</pages><issn>1934-5925</issn><eissn>1876-861X</eissn><abstract>Volumetric and radiomic analysis of atherosclerotic plaques on coronary CT angiography have been shown to predict high-risk plaque morphology and to predict patient outcomes. However, there is limited information whether image reconstruction algorithms and preprocessing steps (type of binning, number of bins used for discretization) may influence parameter values. We retrospectively identified 60 coronary lesions on coronary CT angiography (CTA). All images were reconstructed using filtered back projection (FBP), hybrid (HIR) and model-based (MIR) iterative reconstruction. Plaques were segmented manually on HIR images and copied to FBP and MIR images to ensure identical voxels were analyzed. Overall, 4 volumetric and 169 radiomic parameters were calculated. Intra-class correlation coefficient (ICC) was used to assess reproducibility between image reconstructions, while linear regression analysis was used to assess the effect of preprocessing steps done before calculating radiomic metrics. All volumetric and radiomic metrics had ICC&gt;0.90 except for first-order statistics: mode, harmonic mean, minimum (0.45, 0.76, 0.84; respectively) and gray level co-occurrence (GLCM) parameters: inverse difference sum and sum variance (0.01, 0.04; respectively). Among GLCM parameters 90% were significantly affected by the type of binning and 100% by the number of bins. In case of gray level run length matrix parameters 100% of metrics were affected by both preprocessing steps. Volumetric and radiomic statistics are robust to image reconstruction algorithms. However, all radiomic variables were affected by preprocessing steps therefore, showing the need for standardization before being implemented into everyday clinical practice.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30447949</pmid><doi>10.1016/j.jcct.2018.11.004</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0885-736X</orcidid><orcidid>https://orcid.org/0000-0002-6640-6260</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1934-5925
ispartof Journal of cardiovascular computed tomography, 2019-11, Vol.13 (6), p.325-330
issn 1934-5925
1876-861X
language eng
recordid cdi_proquest_miscellaneous_2135636638
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Aged
Algorithms
Computed Tomography Angiography - methods
Computer-assisted image analysis
Coronary Angiography - methods
Coronary Artery Disease - diagnostic imaging
Coronary atherosclerosis
Coronary Vessels - diagnostic imaging
Female
Humans
Image reconstruction
Male
Middle Aged
Multidetector Computed Tomography - methods
Multislice computed tomography
Plaque, Atherosclerotic
Predictive Value of Tests
Radiographic Image Interpretation, Computer-Assisted - methods
Reproducibility of Results
Retrospective Studies
title Effect of image reconstruction algorithms on volumetric and radiomic parameters of coronary plaques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A37%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20image%20reconstruction%20algorithms%20on%20volumetric%20and%20radiomic%20parameters%20of%20coronary%20plaques&rft.jtitle=Journal%20of%20cardiovascular%20computed%20tomography&rft.au=Kolossv%C3%A1ry,%20M%C3%A1rton&rft.date=2019-11&rft.volume=13&rft.issue=6&rft.spage=325&rft.epage=330&rft.pages=325-330&rft.issn=1934-5925&rft.eissn=1876-861X&rft_id=info:doi/10.1016/j.jcct.2018.11.004&rft_dat=%3Cproquest_cross%3E2135636638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2135636638&rft_id=info:pmid/30447949&rft_els_id=S1934592518303708&rfr_iscdi=true