Genetic modification of asexual Epichloë endophytes with the perA gene for peramine biosynthesis
Development of grass–endophyte associations with minimal or no detrimental effects in combination with beneficial characteristics is important for pastoral agriculture. The feasibility of enhancing production of an endophyte-derived beneficial alkaloid through introduction of an additional gene copy...
Gespeichert in:
Veröffentlicht in: | Molecular genetics and genomics : MGG 2019-04, Vol.294 (2), p.315-328 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 328 |
---|---|
container_issue | 2 |
container_start_page | 315 |
container_title | Molecular genetics and genomics : MGG |
container_volume | 294 |
creator | Hettiarachchige, Inoka K. Elkins, Aaron C. Reddy, Priyanka Mann, Ross C. Guthridge, Kathryn M. Sawbridge, Timothy I. Forster, John W. Spangenberg, German C. |
description | Development of grass–endophyte associations with minimal or no detrimental effects in combination with beneficial characteristics is important for pastoral agriculture. The feasibility of enhancing production of an endophyte-derived beneficial alkaloid through introduction of an additional gene copy was assessed in a proof-of-concept study. Sexual and asexual
Epichloë
species that form symbiotic associations with cool-season grasses of the Poaceae sub-family Pooideae produce bioactive alkaloids that confer resistance to herbivory by a number of organisms. Of these, peramine is thought to be crucial for protection of perennial ryegrass (
Lolium perenne
L.) from the Argentinian stem weevil, an economically important exotic pest in New Zealand, contributing significantly to pasture persistence. A single gene (
perA
) has been identified as solely responsible for peramine biosynthesis and is distributed widely across
Epichloë
taxa. In the present study, a functional copy of the
perA
gene was introduced into three recipient endophyte genomes by
Agrobacterium tumefaciens
-mediated transformation. The target strains included some that do not produce peramine, and others containing different
perA
gene copies. Mitotically stable transformants generated from all three endophyte strains were able to produce peramine in culture and in planta at variable levels. In summary, this study provides an insight into the potential for artificial combinations of alkaloid biosynthesis in a single endophyte strain through transgenesis, as well as the possibility of using novel genome editing techniques to edit the
perA
gene of non-peramine producing strains. |
doi_str_mv | 10.1007/s00438-018-1510-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2135125169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2133676091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-dd7476b976c926bdb31c67c53c8f6e75b9ae5b6fcad0618930c63da54b3041913</originalsourceid><addsrcrecordid>eNp1kM9KxDAQh4Mo_ll9AC8S8OKlmmnapD2KrKsgeNFzSNN0G2mbmrS4-0w-hi9m6q4KgqdkmG9-yXwInQK5BEL4lSckoVlEIIsgBRKtdtAhMOBRwmK6-3OH9AAdef9CCHAW8310QEmSUMbZIZIL3enBKNza0lRGycHYDtsKS69Xo2zwvDeqbuzHO9Zdaft6PWiP38xQ46HWuNfuGi9DBK6smyrZmlAUxvp1FwBv_DHaq2Tj9cn2nKHn2_nTzV308Li4v7l-iBTl8RCVJU84K3LOVB6zoiwoKMZVSlVWMc3TIpc6LVilZEkYZDklitFSpkkRloEc6AxdbHJ7Z19H7QfRGq9008hO29GLGGgKcQosD-j5H_TFjq4Lv5uoSQz5CoQNpZz13ulK9M600q0FEDH5Fxv_IvgXk3-xCjNn2-SxaHX5M_EtPADxBvCh1S21-336_9RP1Q6RrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2133676091</pqid></control><display><type>article</type><title>Genetic modification of asexual Epichloë endophytes with the perA gene for peramine biosynthesis</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Hettiarachchige, Inoka K. ; Elkins, Aaron C. ; Reddy, Priyanka ; Mann, Ross C. ; Guthridge, Kathryn M. ; Sawbridge, Timothy I. ; Forster, John W. ; Spangenberg, German C.</creator><creatorcontrib>Hettiarachchige, Inoka K. ; Elkins, Aaron C. ; Reddy, Priyanka ; Mann, Ross C. ; Guthridge, Kathryn M. ; Sawbridge, Timothy I. ; Forster, John W. ; Spangenberg, German C.</creatorcontrib><description>Development of grass–endophyte associations with minimal or no detrimental effects in combination with beneficial characteristics is important for pastoral agriculture. The feasibility of enhancing production of an endophyte-derived beneficial alkaloid through introduction of an additional gene copy was assessed in a proof-of-concept study. Sexual and asexual
Epichloë
species that form symbiotic associations with cool-season grasses of the Poaceae sub-family Pooideae produce bioactive alkaloids that confer resistance to herbivory by a number of organisms. Of these, peramine is thought to be crucial for protection of perennial ryegrass (
Lolium perenne
L.) from the Argentinian stem weevil, an economically important exotic pest in New Zealand, contributing significantly to pasture persistence. A single gene (
perA
) has been identified as solely responsible for peramine biosynthesis and is distributed widely across
Epichloë
taxa. In the present study, a functional copy of the
perA
gene was introduced into three recipient endophyte genomes by
Agrobacterium tumefaciens
-mediated transformation. The target strains included some that do not produce peramine, and others containing different
perA
gene copies. Mitotically stable transformants generated from all three endophyte strains were able to produce peramine in culture and in planta at variable levels. In summary, this study provides an insight into the potential for artificial combinations of alkaloid biosynthesis in a single endophyte strain through transgenesis, as well as the possibility of using novel genome editing techniques to edit the
perA
gene of non-peramine producing strains.</description><identifier>ISSN: 1617-4615</identifier><identifier>EISSN: 1617-4623</identifier><identifier>DOI: 10.1007/s00438-018-1510-x</identifier><identifier>PMID: 30443676</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Alkaloids ; Alkaloids - genetics ; Animal Genetics and Genomics ; Animals ; Biochemistry ; Biomedical and Life Sciences ; Biosynthesis ; Disease Resistance - genetics ; Endophytes ; Endophytes - genetics ; Epichloe ; Epichloe - genetics ; Epichloe - growth & development ; Gene Editing ; Genetic transformation ; Genome editing ; Genomes ; Herbivory ; Heterocyclic Compounds, 2-Ring - metabolism ; Human Genetics ; Life Sciences ; Lolium perenne ; Microbial Genetics and Genomics ; Original Article ; Pasture ; PerA gene ; Pest Control, Biological ; Phylogeny ; Plant Diseases - genetics ; Plant Diseases - microbiology ; Plant Genetics and Genomics ; Poaceae - genetics ; Poaceae - microbiology ; Polyamines - metabolism ; Reproduction, Asexual - genetics ; Strains (organisms) ; Symbiosis - genetics ; Weevils - genetics ; Weevils - pathogenicity</subject><ispartof>Molecular genetics and genomics : MGG, 2019-04, Vol.294 (2), p.315-328</ispartof><rights>The Author(s) 2018</rights><rights>Molecular Genetics and Genomics is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-dd7476b976c926bdb31c67c53c8f6e75b9ae5b6fcad0618930c63da54b3041913</citedby><cites>FETCH-LOGICAL-c372t-dd7476b976c926bdb31c67c53c8f6e75b9ae5b6fcad0618930c63da54b3041913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00438-018-1510-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00438-018-1510-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30443676$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hettiarachchige, Inoka K.</creatorcontrib><creatorcontrib>Elkins, Aaron C.</creatorcontrib><creatorcontrib>Reddy, Priyanka</creatorcontrib><creatorcontrib>Mann, Ross C.</creatorcontrib><creatorcontrib>Guthridge, Kathryn M.</creatorcontrib><creatorcontrib>Sawbridge, Timothy I.</creatorcontrib><creatorcontrib>Forster, John W.</creatorcontrib><creatorcontrib>Spangenberg, German C.</creatorcontrib><title>Genetic modification of asexual Epichloë endophytes with the perA gene for peramine biosynthesis</title><title>Molecular genetics and genomics : MGG</title><addtitle>Mol Genet Genomics</addtitle><addtitle>Mol Genet Genomics</addtitle><description>Development of grass–endophyte associations with minimal or no detrimental effects in combination with beneficial characteristics is important for pastoral agriculture. The feasibility of enhancing production of an endophyte-derived beneficial alkaloid through introduction of an additional gene copy was assessed in a proof-of-concept study. Sexual and asexual
Epichloë
species that form symbiotic associations with cool-season grasses of the Poaceae sub-family Pooideae produce bioactive alkaloids that confer resistance to herbivory by a number of organisms. Of these, peramine is thought to be crucial for protection of perennial ryegrass (
Lolium perenne
L.) from the Argentinian stem weevil, an economically important exotic pest in New Zealand, contributing significantly to pasture persistence. A single gene (
perA
) has been identified as solely responsible for peramine biosynthesis and is distributed widely across
Epichloë
taxa. In the present study, a functional copy of the
perA
gene was introduced into three recipient endophyte genomes by
Agrobacterium tumefaciens
-mediated transformation. The target strains included some that do not produce peramine, and others containing different
perA
gene copies. Mitotically stable transformants generated from all three endophyte strains were able to produce peramine in culture and in planta at variable levels. In summary, this study provides an insight into the potential for artificial combinations of alkaloid biosynthesis in a single endophyte strain through transgenesis, as well as the possibility of using novel genome editing techniques to edit the
perA
gene of non-peramine producing strains.</description><subject>Alkaloids</subject><subject>Alkaloids - genetics</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Disease Resistance - genetics</subject><subject>Endophytes</subject><subject>Endophytes - genetics</subject><subject>Epichloe</subject><subject>Epichloe - genetics</subject><subject>Epichloe - growth & development</subject><subject>Gene Editing</subject><subject>Genetic transformation</subject><subject>Genome editing</subject><subject>Genomes</subject><subject>Herbivory</subject><subject>Heterocyclic Compounds, 2-Ring - metabolism</subject><subject>Human Genetics</subject><subject>Life Sciences</subject><subject>Lolium perenne</subject><subject>Microbial Genetics and Genomics</subject><subject>Original Article</subject><subject>Pasture</subject><subject>PerA gene</subject><subject>Pest Control, Biological</subject><subject>Phylogeny</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Genetics and Genomics</subject><subject>Poaceae - genetics</subject><subject>Poaceae - microbiology</subject><subject>Polyamines - metabolism</subject><subject>Reproduction, Asexual - genetics</subject><subject>Strains (organisms)</subject><subject>Symbiosis - genetics</subject><subject>Weevils - genetics</subject><subject>Weevils - pathogenicity</subject><issn>1617-4615</issn><issn>1617-4623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM9KxDAQh4Mo_ll9AC8S8OKlmmnapD2KrKsgeNFzSNN0G2mbmrS4-0w-hi9m6q4KgqdkmG9-yXwInQK5BEL4lSckoVlEIIsgBRKtdtAhMOBRwmK6-3OH9AAdef9CCHAW8310QEmSUMbZIZIL3enBKNza0lRGycHYDtsKS69Xo2zwvDeqbuzHO9Zdaft6PWiP38xQ46HWuNfuGi9DBK6smyrZmlAUxvp1FwBv_DHaq2Tj9cn2nKHn2_nTzV308Li4v7l-iBTl8RCVJU84K3LOVB6zoiwoKMZVSlVWMc3TIpc6LVilZEkYZDklitFSpkkRloEc6AxdbHJ7Z19H7QfRGq9008hO29GLGGgKcQosD-j5H_TFjq4Lv5uoSQz5CoQNpZz13ulK9M600q0FEDH5Fxv_IvgXk3-xCjNn2-SxaHX5M_EtPADxBvCh1S21-336_9RP1Q6RrQ</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Hettiarachchige, Inoka K.</creator><creator>Elkins, Aaron C.</creator><creator>Reddy, Priyanka</creator><creator>Mann, Ross C.</creator><creator>Guthridge, Kathryn M.</creator><creator>Sawbridge, Timothy I.</creator><creator>Forster, John W.</creator><creator>Spangenberg, German C.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20190401</creationdate><title>Genetic modification of asexual Epichloë endophytes with the perA gene for peramine biosynthesis</title><author>Hettiarachchige, Inoka K. ; Elkins, Aaron C. ; Reddy, Priyanka ; Mann, Ross C. ; Guthridge, Kathryn M. ; Sawbridge, Timothy I. ; Forster, John W. ; Spangenberg, German C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-dd7476b976c926bdb31c67c53c8f6e75b9ae5b6fcad0618930c63da54b3041913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alkaloids</topic><topic>Alkaloids - genetics</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Disease Resistance - genetics</topic><topic>Endophytes</topic><topic>Endophytes - genetics</topic><topic>Epichloe</topic><topic>Epichloe - genetics</topic><topic>Epichloe - growth & development</topic><topic>Gene Editing</topic><topic>Genetic transformation</topic><topic>Genome editing</topic><topic>Genomes</topic><topic>Herbivory</topic><topic>Heterocyclic Compounds, 2-Ring - metabolism</topic><topic>Human Genetics</topic><topic>Life Sciences</topic><topic>Lolium perenne</topic><topic>Microbial Genetics and Genomics</topic><topic>Original Article</topic><topic>Pasture</topic><topic>PerA gene</topic><topic>Pest Control, Biological</topic><topic>Phylogeny</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Genetics and Genomics</topic><topic>Poaceae - genetics</topic><topic>Poaceae - microbiology</topic><topic>Polyamines - metabolism</topic><topic>Reproduction, Asexual - genetics</topic><topic>Strains (organisms)</topic><topic>Symbiosis - genetics</topic><topic>Weevils - genetics</topic><topic>Weevils - pathogenicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hettiarachchige, Inoka K.</creatorcontrib><creatorcontrib>Elkins, Aaron C.</creatorcontrib><creatorcontrib>Reddy, Priyanka</creatorcontrib><creatorcontrib>Mann, Ross C.</creatorcontrib><creatorcontrib>Guthridge, Kathryn M.</creatorcontrib><creatorcontrib>Sawbridge, Timothy I.</creatorcontrib><creatorcontrib>Forster, John W.</creatorcontrib><creatorcontrib>Spangenberg, German C.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular genetics and genomics : MGG</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hettiarachchige, Inoka K.</au><au>Elkins, Aaron C.</au><au>Reddy, Priyanka</au><au>Mann, Ross C.</au><au>Guthridge, Kathryn M.</au><au>Sawbridge, Timothy I.</au><au>Forster, John W.</au><au>Spangenberg, German C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic modification of asexual Epichloë endophytes with the perA gene for peramine biosynthesis</atitle><jtitle>Molecular genetics and genomics : MGG</jtitle><stitle>Mol Genet Genomics</stitle><addtitle>Mol Genet Genomics</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>294</volume><issue>2</issue><spage>315</spage><epage>328</epage><pages>315-328</pages><issn>1617-4615</issn><eissn>1617-4623</eissn><abstract>Development of grass–endophyte associations with minimal or no detrimental effects in combination with beneficial characteristics is important for pastoral agriculture. The feasibility of enhancing production of an endophyte-derived beneficial alkaloid through introduction of an additional gene copy was assessed in a proof-of-concept study. Sexual and asexual
Epichloë
species that form symbiotic associations with cool-season grasses of the Poaceae sub-family Pooideae produce bioactive alkaloids that confer resistance to herbivory by a number of organisms. Of these, peramine is thought to be crucial for protection of perennial ryegrass (
Lolium perenne
L.) from the Argentinian stem weevil, an economically important exotic pest in New Zealand, contributing significantly to pasture persistence. A single gene (
perA
) has been identified as solely responsible for peramine biosynthesis and is distributed widely across
Epichloë
taxa. In the present study, a functional copy of the
perA
gene was introduced into three recipient endophyte genomes by
Agrobacterium tumefaciens
-mediated transformation. The target strains included some that do not produce peramine, and others containing different
perA
gene copies. Mitotically stable transformants generated from all three endophyte strains were able to produce peramine in culture and in planta at variable levels. In summary, this study provides an insight into the potential for artificial combinations of alkaloid biosynthesis in a single endophyte strain through transgenesis, as well as the possibility of using novel genome editing techniques to edit the
perA
gene of non-peramine producing strains.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>30443676</pmid><doi>10.1007/s00438-018-1510-x</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1617-4615 |
ispartof | Molecular genetics and genomics : MGG, 2019-04, Vol.294 (2), p.315-328 |
issn | 1617-4615 1617-4623 |
language | eng |
recordid | cdi_proquest_miscellaneous_2135125169 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Alkaloids Alkaloids - genetics Animal Genetics and Genomics Animals Biochemistry Biomedical and Life Sciences Biosynthesis Disease Resistance - genetics Endophytes Endophytes - genetics Epichloe Epichloe - genetics Epichloe - growth & development Gene Editing Genetic transformation Genome editing Genomes Herbivory Heterocyclic Compounds, 2-Ring - metabolism Human Genetics Life Sciences Lolium perenne Microbial Genetics and Genomics Original Article Pasture PerA gene Pest Control, Biological Phylogeny Plant Diseases - genetics Plant Diseases - microbiology Plant Genetics and Genomics Poaceae - genetics Poaceae - microbiology Polyamines - metabolism Reproduction, Asexual - genetics Strains (organisms) Symbiosis - genetics Weevils - genetics Weevils - pathogenicity |
title | Genetic modification of asexual Epichloë endophytes with the perA gene for peramine biosynthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A54%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20modification%20of%20asexual%20Epichlo%C3%AB%20endophytes%20with%20the%20perA%20gene%20for%20peramine%20biosynthesis&rft.jtitle=Molecular%20genetics%20and%20genomics%20:%20MGG&rft.au=Hettiarachchige,%20Inoka%20K.&rft.date=2019-04-01&rft.volume=294&rft.issue=2&rft.spage=315&rft.epage=328&rft.pages=315-328&rft.issn=1617-4615&rft.eissn=1617-4623&rft_id=info:doi/10.1007/s00438-018-1510-x&rft_dat=%3Cproquest_cross%3E2133676091%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2133676091&rft_id=info:pmid/30443676&rfr_iscdi=true |