Fermentative hydrogen production from low-value substrates
Hydrogen is a promising energy source that is believed to replace the conventional energy sources e.g. fossil fuels over years. Hydrogen production methods can be divided into conventional production methods which depend mainly on fossil fuels and alternative production methods including electrolysi...
Gespeichert in:
Veröffentlicht in: | World journal of microbiology & biotechnology 2018-12, Vol.34 (12), p.176-176, Article 176 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hydrogen is a promising energy source that is believed to replace the conventional energy sources e.g. fossil fuels over years. Hydrogen production methods can be divided into conventional production methods which depend mainly on fossil fuels and alternative production methods including electrolysis of water, biophotolysis and fermentation hydrogen production from organic waste materials. Compared to the conventional methods, the alternative hydrogen production methods are less energy intensive and negative-value substrates i.e. waste materials can be used to produce hydrogen. Among the alternative methods, fermentation process including dark and photo-fermentation has gained more attention because these processes are simple, waste materials can be utilized, and high hydrogen yields can be achieved. The fermentation process is affected by several parameters such as type of inoculum, pH, temperature, substrate type and concentration, hydraulic retention time, etc. In order to achieve optimum hydrogen yields and maximum substrate degradation, the operating conditions of the fermentation process must be optimized. In this review, two routes for biohydrogen production as dark and photo-fermentation are discussed. Dark/photo-fermentation technology is a new approach that can be used to increase the hydrogen yield and improve the energy recovery from organic wastes. |
---|---|
ISSN: | 0959-3993 1573-0972 |
DOI: | 10.1007/s11274-018-2558-9 |