Development and evaluation of realistic optical cell models for rapid and label‐free cell assay by diffraction imaging
Methods for rapid and label‐free cell assay are highly desired in life science. Single‐shot diffraction imaging presents strong potentials to achieve this goal as evidenced by past experimental results using methods such as polarization diffraction imaging flow cytometry. We present here a platform...
Gespeichert in:
Veröffentlicht in: | Journal of biophotonics 2019-04, Vol.12 (4), p.e201800287-n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | e201800287 |
container_title | Journal of biophotonics |
container_volume | 12 |
creator | Wang, Shuting Liu, Jing Lu, Jun Q. Wang, Wenjin Al‐Qaysi, Safaa A. Xu, Yaohui Jiang, Wenhuan Hu, Xin‐Hua |
description | Methods for rapid and label‐free cell assay are highly desired in life science. Single‐shot diffraction imaging presents strong potentials to achieve this goal as evidenced by past experimental results using methods such as polarization diffraction imaging flow cytometry. We present here a platform of methods toward solving these problems and results of optical cell model (OCM) evaluations by calculations and analysis of cross‐polarized diffraction image (p‐DI) pairs. Four types of realistic OCMs have been developed with two prostate cell structures and adjustable refractive index (RI) parameters to investigate the effects of cell morphology and index distribution on calculated p‐DI pairs. Image patterns have been characterized by a gray‐level co‐occurrence matrix (GLCM) algorithm and four GLCM parameters and linear depolarization ratio δL have been selected to compare calculated against measured data of prostate cells. Our results show that the irregular shapes of and heterogeneity in RI distributions for organelles play significant roles in the spatial distribution of scattered light by cells in comparison to the average RI values and their differences among the organelles. Discrepancies in GLCM and δL parameters between calculated and measured p‐DI data provide useful insight for understanding light scattering by single cells and improving OCM.
Four types of realistic optical cell models have been developed to investigate the effects of cell morphology and index distribution on calculated cross‐polarized diffraction image pairs. Our results show that the irregular shapes of and heterogeneity in refractive index (RI) distributions for organelles play significant roles in the spatial distribution of scattered light by cells in comparison with the average RI values and their differences among the organelles. |
doi_str_mv | 10.1002/jbio.201800287 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2135121219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2202054672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3737-cc7d0f74ca43b30c0996b6ae7cd0d8a4bcfc198256eb8739b4f8328a8ad7f6413</originalsourceid><addsrcrecordid>eNqFkcuKFDEUhoM4OBfdupSAGzfd5taV1FJHR0cGZqPgLpzchjSpSpl0jfbOR_AZfRLT02MLs5HASQ585-OEH6HnlCwpIez12sS8ZISq1ij5CJ1Q1YkF6YR6fHjzr8fotNY1IR3hK_4EHXMihCSiP0E_3vlbn_I0-HGDYXTY30KaYRPziHPAxUOKdRMtzlOrkLD1KeEhO58qDrngAlN0d5MJjE-_f_4Kxfs9BrXCFpstdjGEAvbOGge4iePNU3QUIFX_7P4-Q18u3n8-_7i4uv5wef7mamG55HJhrXQkSGFBcMOJJX3fmQ68tI44BcLYYGmv2KrzRkneGxEUZwoUOBk6QfkZerX3TiV_m33d6CHW3XYw-jxXzShfUdZO39CXD9B1nsvYttOMEUZWopOsUcs9ZUuutfigp9L-VLaaEr3LRO8y0YdM2sCLe-1sBu8O-N8QGtDvge8x-e1_dPrT28vrf_I__caavg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2202054672</pqid></control><display><type>article</type><title>Development and evaluation of realistic optical cell models for rapid and label‐free cell assay by diffraction imaging</title><source>Access via Wiley Online Library</source><creator>Wang, Shuting ; Liu, Jing ; Lu, Jun Q. ; Wang, Wenjin ; Al‐Qaysi, Safaa A. ; Xu, Yaohui ; Jiang, Wenhuan ; Hu, Xin‐Hua</creator><creatorcontrib>Wang, Shuting ; Liu, Jing ; Lu, Jun Q. ; Wang, Wenjin ; Al‐Qaysi, Safaa A. ; Xu, Yaohui ; Jiang, Wenhuan ; Hu, Xin‐Hua</creatorcontrib><description>Methods for rapid and label‐free cell assay are highly desired in life science. Single‐shot diffraction imaging presents strong potentials to achieve this goal as evidenced by past experimental results using methods such as polarization diffraction imaging flow cytometry. We present here a platform of methods toward solving these problems and results of optical cell model (OCM) evaluations by calculations and analysis of cross‐polarized diffraction image (p‐DI) pairs. Four types of realistic OCMs have been developed with two prostate cell structures and adjustable refractive index (RI) parameters to investigate the effects of cell morphology and index distribution on calculated p‐DI pairs. Image patterns have been characterized by a gray‐level co‐occurrence matrix (GLCM) algorithm and four GLCM parameters and linear depolarization ratio δL have been selected to compare calculated against measured data of prostate cells. Our results show that the irregular shapes of and heterogeneity in RI distributions for organelles play significant roles in the spatial distribution of scattered light by cells in comparison to the average RI values and their differences among the organelles. Discrepancies in GLCM and δL parameters between calculated and measured p‐DI data provide useful insight for understanding light scattering by single cells and improving OCM.
Four types of realistic optical cell models have been developed to investigate the effects of cell morphology and index distribution on calculated cross‐polarized diffraction image pairs. Our results show that the irregular shapes of and heterogeneity in refractive index (RI) distributions for organelles play significant roles in the spatial distribution of scattered light by cells in comparison with the average RI values and their differences among the organelles.</description><identifier>ISSN: 1864-063X</identifier><identifier>EISSN: 1864-0648</identifier><identifier>DOI: 10.1002/jbio.201800287</identifier><identifier>PMID: 30447049</identifier><language>eng</language><publisher>Weinheim: WILEY‐VCH Verlag GmbH & Co. KGaA</publisher><subject>Algorithms ; cell analysis ; Cell culture ; cell models ; Cell morphology ; Cytology ; Depolarization ; Diffraction ; diffraction imaging ; Flow cytometry ; Heterogeneity ; Imaging ; Light scattering ; Mathematical models ; Matrix methods ; Morphology ; Organelles ; Parameters ; Prostate ; Refractivity ; Spatial distribution</subject><ispartof>Journal of biophotonics, 2019-04, Vol.12 (4), p.e201800287-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3737-cc7d0f74ca43b30c0996b6ae7cd0d8a4bcfc198256eb8739b4f8328a8ad7f6413</citedby><cites>FETCH-LOGICAL-c3737-cc7d0f74ca43b30c0996b6ae7cd0d8a4bcfc198256eb8739b4f8328a8ad7f6413</cites><orcidid>0000-0002-4353-9028</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbio.201800287$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbio.201800287$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30447049$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Shuting</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Lu, Jun Q.</creatorcontrib><creatorcontrib>Wang, Wenjin</creatorcontrib><creatorcontrib>Al‐Qaysi, Safaa A.</creatorcontrib><creatorcontrib>Xu, Yaohui</creatorcontrib><creatorcontrib>Jiang, Wenhuan</creatorcontrib><creatorcontrib>Hu, Xin‐Hua</creatorcontrib><title>Development and evaluation of realistic optical cell models for rapid and label‐free cell assay by diffraction imaging</title><title>Journal of biophotonics</title><addtitle>J Biophotonics</addtitle><description>Methods for rapid and label‐free cell assay are highly desired in life science. Single‐shot diffraction imaging presents strong potentials to achieve this goal as evidenced by past experimental results using methods such as polarization diffraction imaging flow cytometry. We present here a platform of methods toward solving these problems and results of optical cell model (OCM) evaluations by calculations and analysis of cross‐polarized diffraction image (p‐DI) pairs. Four types of realistic OCMs have been developed with two prostate cell structures and adjustable refractive index (RI) parameters to investigate the effects of cell morphology and index distribution on calculated p‐DI pairs. Image patterns have been characterized by a gray‐level co‐occurrence matrix (GLCM) algorithm and four GLCM parameters and linear depolarization ratio δL have been selected to compare calculated against measured data of prostate cells. Our results show that the irregular shapes of and heterogeneity in RI distributions for organelles play significant roles in the spatial distribution of scattered light by cells in comparison to the average RI values and their differences among the organelles. Discrepancies in GLCM and δL parameters between calculated and measured p‐DI data provide useful insight for understanding light scattering by single cells and improving OCM.
Four types of realistic optical cell models have been developed to investigate the effects of cell morphology and index distribution on calculated cross‐polarized diffraction image pairs. Our results show that the irregular shapes of and heterogeneity in refractive index (RI) distributions for organelles play significant roles in the spatial distribution of scattered light by cells in comparison with the average RI values and their differences among the organelles.</description><subject>Algorithms</subject><subject>cell analysis</subject><subject>Cell culture</subject><subject>cell models</subject><subject>Cell morphology</subject><subject>Cytology</subject><subject>Depolarization</subject><subject>Diffraction</subject><subject>diffraction imaging</subject><subject>Flow cytometry</subject><subject>Heterogeneity</subject><subject>Imaging</subject><subject>Light scattering</subject><subject>Mathematical models</subject><subject>Matrix methods</subject><subject>Morphology</subject><subject>Organelles</subject><subject>Parameters</subject><subject>Prostate</subject><subject>Refractivity</subject><subject>Spatial distribution</subject><issn>1864-063X</issn><issn>1864-0648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkcuKFDEUhoM4OBfdupSAGzfd5taV1FJHR0cGZqPgLpzchjSpSpl0jfbOR_AZfRLT02MLs5HASQ585-OEH6HnlCwpIez12sS8ZISq1ij5CJ1Q1YkF6YR6fHjzr8fotNY1IR3hK_4EHXMihCSiP0E_3vlbn_I0-HGDYXTY30KaYRPziHPAxUOKdRMtzlOrkLD1KeEhO58qDrngAlN0d5MJjE-_f_4Kxfs9BrXCFpstdjGEAvbOGge4iePNU3QUIFX_7P4-Q18u3n8-_7i4uv5wef7mamG55HJhrXQkSGFBcMOJJX3fmQ68tI44BcLYYGmv2KrzRkneGxEUZwoUOBk6QfkZerX3TiV_m33d6CHW3XYw-jxXzShfUdZO39CXD9B1nsvYttOMEUZWopOsUcs9ZUuutfigp9L-VLaaEr3LRO8y0YdM2sCLe-1sBu8O-N8QGtDvge8x-e1_dPrT28vrf_I__caavg</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Wang, Shuting</creator><creator>Liu, Jing</creator><creator>Lu, Jun Q.</creator><creator>Wang, Wenjin</creator><creator>Al‐Qaysi, Safaa A.</creator><creator>Xu, Yaohui</creator><creator>Jiang, Wenhuan</creator><creator>Hu, Xin‐Hua</creator><general>WILEY‐VCH Verlag GmbH & Co. KGaA</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>K9.</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4353-9028</orcidid></search><sort><creationdate>201904</creationdate><title>Development and evaluation of realistic optical cell models for rapid and label‐free cell assay by diffraction imaging</title><author>Wang, Shuting ; Liu, Jing ; Lu, Jun Q. ; Wang, Wenjin ; Al‐Qaysi, Safaa A. ; Xu, Yaohui ; Jiang, Wenhuan ; Hu, Xin‐Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3737-cc7d0f74ca43b30c0996b6ae7cd0d8a4bcfc198256eb8739b4f8328a8ad7f6413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>cell analysis</topic><topic>Cell culture</topic><topic>cell models</topic><topic>Cell morphology</topic><topic>Cytology</topic><topic>Depolarization</topic><topic>Diffraction</topic><topic>diffraction imaging</topic><topic>Flow cytometry</topic><topic>Heterogeneity</topic><topic>Imaging</topic><topic>Light scattering</topic><topic>Mathematical models</topic><topic>Matrix methods</topic><topic>Morphology</topic><topic>Organelles</topic><topic>Parameters</topic><topic>Prostate</topic><topic>Refractivity</topic><topic>Spatial distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shuting</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Lu, Jun Q.</creatorcontrib><creatorcontrib>Wang, Wenjin</creatorcontrib><creatorcontrib>Al‐Qaysi, Safaa A.</creatorcontrib><creatorcontrib>Xu, Yaohui</creatorcontrib><creatorcontrib>Jiang, Wenhuan</creatorcontrib><creatorcontrib>Hu, Xin‐Hua</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biophotonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shuting</au><au>Liu, Jing</au><au>Lu, Jun Q.</au><au>Wang, Wenjin</au><au>Al‐Qaysi, Safaa A.</au><au>Xu, Yaohui</au><au>Jiang, Wenhuan</au><au>Hu, Xin‐Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and evaluation of realistic optical cell models for rapid and label‐free cell assay by diffraction imaging</atitle><jtitle>Journal of biophotonics</jtitle><addtitle>J Biophotonics</addtitle><date>2019-04</date><risdate>2019</risdate><volume>12</volume><issue>4</issue><spage>e201800287</spage><epage>n/a</epage><pages>e201800287-n/a</pages><issn>1864-063X</issn><eissn>1864-0648</eissn><abstract>Methods for rapid and label‐free cell assay are highly desired in life science. Single‐shot diffraction imaging presents strong potentials to achieve this goal as evidenced by past experimental results using methods such as polarization diffraction imaging flow cytometry. We present here a platform of methods toward solving these problems and results of optical cell model (OCM) evaluations by calculations and analysis of cross‐polarized diffraction image (p‐DI) pairs. Four types of realistic OCMs have been developed with two prostate cell structures and adjustable refractive index (RI) parameters to investigate the effects of cell morphology and index distribution on calculated p‐DI pairs. Image patterns have been characterized by a gray‐level co‐occurrence matrix (GLCM) algorithm and four GLCM parameters and linear depolarization ratio δL have been selected to compare calculated against measured data of prostate cells. Our results show that the irregular shapes of and heterogeneity in RI distributions for organelles play significant roles in the spatial distribution of scattered light by cells in comparison to the average RI values and their differences among the organelles. Discrepancies in GLCM and δL parameters between calculated and measured p‐DI data provide useful insight for understanding light scattering by single cells and improving OCM.
Four types of realistic optical cell models have been developed to investigate the effects of cell morphology and index distribution on calculated cross‐polarized diffraction image pairs. Our results show that the irregular shapes of and heterogeneity in refractive index (RI) distributions for organelles play significant roles in the spatial distribution of scattered light by cells in comparison with the average RI values and their differences among the organelles.</abstract><cop>Weinheim</cop><pub>WILEY‐VCH Verlag GmbH & Co. KGaA</pub><pmid>30447049</pmid><doi>10.1002/jbio.201800287</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4353-9028</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1864-063X |
ispartof | Journal of biophotonics, 2019-04, Vol.12 (4), p.e201800287-n/a |
issn | 1864-063X 1864-0648 |
language | eng |
recordid | cdi_proquest_miscellaneous_2135121219 |
source | Access via Wiley Online Library |
subjects | Algorithms cell analysis Cell culture cell models Cell morphology Cytology Depolarization Diffraction diffraction imaging Flow cytometry Heterogeneity Imaging Light scattering Mathematical models Matrix methods Morphology Organelles Parameters Prostate Refractivity Spatial distribution |
title | Development and evaluation of realistic optical cell models for rapid and label‐free cell assay by diffraction imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20evaluation%20of%20realistic%20optical%20cell%20models%20for%20rapid%20and%20label%E2%80%90free%20cell%20assay%20by%20diffraction%20imaging&rft.jtitle=Journal%20of%20biophotonics&rft.au=Wang,%20Shuting&rft.date=2019-04&rft.volume=12&rft.issue=4&rft.spage=e201800287&rft.epage=n/a&rft.pages=e201800287-n/a&rft.issn=1864-063X&rft.eissn=1864-0648&rft_id=info:doi/10.1002/jbio.201800287&rft_dat=%3Cproquest_cross%3E2202054672%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2202054672&rft_id=info:pmid/30447049&rfr_iscdi=true |