Mechanical Stability of Surface Nanobubbles

Bubble cavitation is important in technologies such as noninvasive cancer treatment and diagnosis, surface cleaning, and waste-water treatment. The cavitation threshold is the critical external tensile pressure that induces unstable growth of the bubble. Surface nanobubbles have been previously show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2019-07, Vol.35 (29), p.9325-9333
Hauptverfasser: Dockar, Duncan, Borg, Matthew K, Reese, Jason M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bubble cavitation is important in technologies such as noninvasive cancer treatment and diagnosis, surface cleaning, and waste-water treatment. The cavitation threshold is the critical external tensile pressure that induces unstable growth of the bubble. Surface nanobubbles have been previously shown experimentally to be stable down to −6 MPa, in disagreement with the Blake threshold, which is the classical cavitation model that predicts bulk bubbles with radii ∼100 nm should be unstable below −0.6 MPa. Here, we use molecular dynamics to simulate quasi-two-dimensional (2D) and three-dimensional (3D) nitrogen surface nanobubbles immersed in water, subject to a range of pressure drops until unstable growth is observed. We propose and assess new cavitation threshold models, derived from mechanical equilibrium analyses for both the quasi-2D and 3D cavitating bubbles. The discrepancies from the Blake threshold are attributed to the pinned contact line, within which the surface nanobubbles grow with constant lateral contact diameter, and consequently a reduced radius of curvature. We conclude with a critical discussion of previous experimental results on the cavitation of relatively large surface nanobubbles.
ISSN:0743-7463
1520-5827
DOI:10.1021/acs.langmuir.8b02887