Encoding Chaos in Neural Spike Trains

A recent theoretical study showed that with a chaotically driven integrate-and-fire neutron model, there can be a one-to-one correspondence between the system states of the chaotic input and the interspike intervals (ISIs) from the model. In this investigation, an attempt is made to extend the previ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 1998-03, Vol.80 (11), p.2485-2488
Hauptverfasser: Richardson, Kristen A., Imhoff, Thomas T., Grigg, Peter, Collins, James J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2488
container_issue 11
container_start_page 2485
container_title Physical review letters
container_volume 80
creator Richardson, Kristen A.
Imhoff, Thomas T.
Grigg, Peter
Collins, James J.
description A recent theoretical study showed that with a chaotically driven integrate-and-fire neutron model, there can be a one-to-one correspondence between the system states of the chaotic input and the interspike intervals (ISIs) from the model. In this investigation, an attempt is made to extend the previous work to in vitro studies on rat cutaneous afferents. In particular, the hypothesis that the deterministic structure of a chaotic input signal can be preserved when the signal is converted into a spike train by a sensory neuron is tested. Ten neurons are included in the investigation. Determinism of the ISI series is assessed using a nonlinear prediction algorithm.
doi_str_mv 10.1103/PhysRevLett.80.2485
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21350452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>328799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-c97edd4c4e8a17581ccc59ce7f5dcd4a5b83d8553b6d41dcd089f566ad0c2f03</originalsourceid><addsrcrecordid>eNpNkEFPgzAYhhujiTj9BV646A38PtrScjRkThOiRrk3XVscygBbMNm_d8s8eHqTN0-ew0PINUKKCPTudbMLb-6nctOUSkgzJvkJiRBEkQhEdkoiAIpJASDOyUUInwCAWS4jcrPszWDb_iMuN3oIcdvHz272uovfx_bLxbXXbR8uyVmju-Cu_nZB6odlXT4m1cvqqbyvEpMJOSWmEM5aZpiTGgWXaIzhhXGi4dZYpvlaUis5p-vcMtxfIIuG57m2YLIG6ILcHrWjH75nFya1bYNxXad7N8xBZUg5MJ7tQXoEjR9C8K5Ro2-32u8UgjoUUf-KKAnqUIT-AnREVtE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21350452</pqid></control><display><type>article</type><title>Encoding Chaos in Neural Spike Trains</title><source>American Physical Society Journals</source><creator>Richardson, Kristen A. ; Imhoff, Thomas T. ; Grigg, Peter ; Collins, James J.</creator><creatorcontrib>Richardson, Kristen A. ; Imhoff, Thomas T. ; Grigg, Peter ; Collins, James J.</creatorcontrib><description>A recent theoretical study showed that with a chaotically driven integrate-and-fire neutron model, there can be a one-to-one correspondence between the system states of the chaotic input and the interspike intervals (ISIs) from the model. In this investigation, an attempt is made to extend the previous work to in vitro studies on rat cutaneous afferents. In particular, the hypothesis that the deterministic structure of a chaotic input signal can be preserved when the signal is converted into a spike train by a sensory neuron is tested. Ten neurons are included in the investigation. Determinism of the ISI series is assessed using a nonlinear prediction algorithm.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.80.2485</identifier><language>eng</language><subject>Actuators ; Algorithms ; Forecasting ; Fourier transforms ; Mathematical models ; Neurology ; Position control ; Random processes ; Signal encoding ; Vectors</subject><ispartof>Physical review letters, 1998-03, Vol.80 (11), p.2485-2488</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c278t-c97edd4c4e8a17581ccc59ce7f5dcd4a5b83d8553b6d41dcd089f566ad0c2f03</citedby><cites>FETCH-LOGICAL-c278t-c97edd4c4e8a17581ccc59ce7f5dcd4a5b83d8553b6d41dcd089f566ad0c2f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Richardson, Kristen A.</creatorcontrib><creatorcontrib>Imhoff, Thomas T.</creatorcontrib><creatorcontrib>Grigg, Peter</creatorcontrib><creatorcontrib>Collins, James J.</creatorcontrib><title>Encoding Chaos in Neural Spike Trains</title><title>Physical review letters</title><description>A recent theoretical study showed that with a chaotically driven integrate-and-fire neutron model, there can be a one-to-one correspondence between the system states of the chaotic input and the interspike intervals (ISIs) from the model. In this investigation, an attempt is made to extend the previous work to in vitro studies on rat cutaneous afferents. In particular, the hypothesis that the deterministic structure of a chaotic input signal can be preserved when the signal is converted into a spike train by a sensory neuron is tested. Ten neurons are included in the investigation. Determinism of the ISI series is assessed using a nonlinear prediction algorithm.</description><subject>Actuators</subject><subject>Algorithms</subject><subject>Forecasting</subject><subject>Fourier transforms</subject><subject>Mathematical models</subject><subject>Neurology</subject><subject>Position control</subject><subject>Random processes</subject><subject>Signal encoding</subject><subject>Vectors</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNpNkEFPgzAYhhujiTj9BV646A38PtrScjRkThOiRrk3XVscygBbMNm_d8s8eHqTN0-ew0PINUKKCPTudbMLb-6nctOUSkgzJvkJiRBEkQhEdkoiAIpJASDOyUUInwCAWS4jcrPszWDb_iMuN3oIcdvHz272uovfx_bLxbXXbR8uyVmju-Cu_nZB6odlXT4m1cvqqbyvEpMJOSWmEM5aZpiTGgWXaIzhhXGi4dZYpvlaUis5p-vcMtxfIIuG57m2YLIG6ILcHrWjH75nFya1bYNxXad7N8xBZUg5MJ7tQXoEjR9C8K5Ro2-32u8UgjoUUf-KKAnqUIT-AnREVtE</recordid><startdate>19980316</startdate><enddate>19980316</enddate><creator>Richardson, Kristen A.</creator><creator>Imhoff, Thomas T.</creator><creator>Grigg, Peter</creator><creator>Collins, James J.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19980316</creationdate><title>Encoding Chaos in Neural Spike Trains</title><author>Richardson, Kristen A. ; Imhoff, Thomas T. ; Grigg, Peter ; Collins, James J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-c97edd4c4e8a17581ccc59ce7f5dcd4a5b83d8553b6d41dcd089f566ad0c2f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Actuators</topic><topic>Algorithms</topic><topic>Forecasting</topic><topic>Fourier transforms</topic><topic>Mathematical models</topic><topic>Neurology</topic><topic>Position control</topic><topic>Random processes</topic><topic>Signal encoding</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richardson, Kristen A.</creatorcontrib><creatorcontrib>Imhoff, Thomas T.</creatorcontrib><creatorcontrib>Grigg, Peter</creatorcontrib><creatorcontrib>Collins, James J.</creatorcontrib><collection>CrossRef</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richardson, Kristen A.</au><au>Imhoff, Thomas T.</au><au>Grigg, Peter</au><au>Collins, James J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Encoding Chaos in Neural Spike Trains</atitle><jtitle>Physical review letters</jtitle><date>1998-03-16</date><risdate>1998</risdate><volume>80</volume><issue>11</issue><spage>2485</spage><epage>2488</epage><pages>2485-2488</pages><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>A recent theoretical study showed that with a chaotically driven integrate-and-fire neutron model, there can be a one-to-one correspondence between the system states of the chaotic input and the interspike intervals (ISIs) from the model. In this investigation, an attempt is made to extend the previous work to in vitro studies on rat cutaneous afferents. In particular, the hypothesis that the deterministic structure of a chaotic input signal can be preserved when the signal is converted into a spike train by a sensory neuron is tested. Ten neurons are included in the investigation. Determinism of the ISI series is assessed using a nonlinear prediction algorithm.</abstract><doi>10.1103/PhysRevLett.80.2485</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 1998-03, Vol.80 (11), p.2485-2488
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_21350452
source American Physical Society Journals
subjects Actuators
Algorithms
Forecasting
Fourier transforms
Mathematical models
Neurology
Position control
Random processes
Signal encoding
Vectors
title Encoding Chaos in Neural Spike Trains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T10%3A29%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Encoding%20Chaos%20in%20Neural%20Spike%20Trains&rft.jtitle=Physical%20review%20letters&rft.au=Richardson,%20Kristen%20A.&rft.date=1998-03-16&rft.volume=80&rft.issue=11&rft.spage=2485&rft.epage=2488&rft.pages=2485-2488&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.80.2485&rft_dat=%3Cproquest_cross%3E328799%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21350452&rft_id=info:pmid/&rfr_iscdi=true