Cooperativity in proton sensing by PIP aquaporins

One of the most intriguing properties of plasma membrane intrinsic protein (PIP) aquaporins (AQPs) is their ability to modulate water transport by sensing different levels of intracellular pH through the assembly of homo‐ and heterotetrameric molecular species in the plasma membrane. In this work, u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FEBS journal 2019-03, Vol.286 (5), p.991-1002
Hauptverfasser: Vitali, Victoria, Jozefkowicz, Cintia, Canessa Fortuna, Agustina, Soto, Gabriela, González Flecha, F. Luis, Alleva, Karina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1002
container_issue 5
container_start_page 991
container_title The FEBS journal
container_volume 286
creator Vitali, Victoria
Jozefkowicz, Cintia
Canessa Fortuna, Agustina
Soto, Gabriela
González Flecha, F. Luis
Alleva, Karina
description One of the most intriguing properties of plasma membrane intrinsic protein (PIP) aquaporins (AQPs) is their ability to modulate water transport by sensing different levels of intracellular pH through the assembly of homo‐ and heterotetrameric molecular species in the plasma membrane. In this work, using a phenomenological modeling approach, we demonstrate that cooperativity in PIP biological response cannot be directly attributed to a cooperative proton binding, as it is usually considered, since it could also be the consequence of a cooperative conformation transition between open and closed states of the channel. Moreover, our results show that, when mixed populations of homo‐ and heterotetrameric PIP channels are coexpressed in the plasma membrane of the same cell, the observed decrease in the degree of positive cooperativity would result from the simultaneous presence of molecular species with different levels of proton sensing. Indeed, the random mixing between different PIP paralogues as subunits in a single tetramer, plus the possibility of mixed populations of homo‐ and heterotetrameric PIP channels widen the spectrum of cooperative responses of a cell membrane. Our approach offers a deep understanding of cooperative transport of AQP channels, as members of a multiprotein family where the relevant proton binding sites of each member have not been clearly elucidated yet. One of the most amazing properties of PIP aquaporins is their ability to cooperatively modulate water transport. We used a phenomenological modeling approach to show that this cooperativity can be attributed not only to the binding of protons but also to the conformational transition. We also uncover that mixed populations of homo‐ and heterotetrameric PIP channels in a cell membrane allow a wide spectrum of cooperative responses improving the effective water transport of that cell.
doi_str_mv 10.1111/febs.14701
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2133825776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187372894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4591-7a667cb0a4146eb74081f69cb08b5bb167598854364b1a5d219e472a0ff8c48c3</originalsourceid><addsrcrecordid>eNp90E9LwzAYBvAgipvTix9ACl5E6Eyavz3q2HQwcKCCt5B0qWR0Tde0Sr-9mZ07ePC95CX8eHh5ALhEcIzC3OVG-zEiHKIjMEScJDFhVBwfdvI-AGferyHElKTpKRhgSDDkmA0BmjhXmVo19tM2XWTLqKpd48rIm9Lb8iPSXbScLyO1bVXlalv6c3CSq8Kbi_07Am-z6evkKV48P84n94s4IzRFMVeM8UxDRRBhRnMCBcpZGn6EplojxmkqBCWYEY0UXSUoNYQnCua5yIjI8Ajc9LnhoG1rfCM31memKFRpXOtlgjAWCeWcBXr9h65dW5fhuqAExzwRKQnqtldZ7byvTS6r2m5U3UkE5a5IuStS_hQZ8NU-stUbszrQ3-YCQD34soXp_omSs-nDSx_6DfTbexk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187372894</pqid></control><display><type>article</type><title>Cooperativity in proton sensing by PIP aquaporins</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Free Full-Text Journals in Chemistry</source><creator>Vitali, Victoria ; Jozefkowicz, Cintia ; Canessa Fortuna, Agustina ; Soto, Gabriela ; González Flecha, F. Luis ; Alleva, Karina</creator><creatorcontrib>Vitali, Victoria ; Jozefkowicz, Cintia ; Canessa Fortuna, Agustina ; Soto, Gabriela ; González Flecha, F. Luis ; Alleva, Karina</creatorcontrib><description>One of the most intriguing properties of plasma membrane intrinsic protein (PIP) aquaporins (AQPs) is their ability to modulate water transport by sensing different levels of intracellular pH through the assembly of homo‐ and heterotetrameric molecular species in the plasma membrane. In this work, using a phenomenological modeling approach, we demonstrate that cooperativity in PIP biological response cannot be directly attributed to a cooperative proton binding, as it is usually considered, since it could also be the consequence of a cooperative conformation transition between open and closed states of the channel. Moreover, our results show that, when mixed populations of homo‐ and heterotetrameric PIP channels are coexpressed in the plasma membrane of the same cell, the observed decrease in the degree of positive cooperativity would result from the simultaneous presence of molecular species with different levels of proton sensing. Indeed, the random mixing between different PIP paralogues as subunits in a single tetramer, plus the possibility of mixed populations of homo‐ and heterotetrameric PIP channels widen the spectrum of cooperative responses of a cell membrane. Our approach offers a deep understanding of cooperative transport of AQP channels, as members of a multiprotein family where the relevant proton binding sites of each member have not been clearly elucidated yet. One of the most amazing properties of PIP aquaporins is their ability to cooperatively modulate water transport. We used a phenomenological modeling approach to show that this cooperativity can be attributed not only to the binding of protons but also to the conformational transition. We also uncover that mixed populations of homo‐ and heterotetrameric PIP channels in a cell membrane allow a wide spectrum of cooperative responses improving the effective water transport of that cell.</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/febs.14701</identifier><identifier>PMID: 30430736</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Animals ; aquaporin ; Aquaporins ; Aquaporins - chemistry ; Aquaporins - metabolism ; Binding sites ; Cell Membrane - metabolism ; Cell membranes ; Channels ; Cooperativity ; Detection ; Hydrogen-Ion Concentration ; Membrane proteins ; paralogues ; Populations ; Protein Conformation ; Proteins ; Protons ; stoichiometry ; Transport ; Water - metabolism ; Water transport ; Xenopus laevis ; Xenopus Proteins - chemistry ; Xenopus Proteins - metabolism</subject><ispartof>The FEBS journal, 2019-03, Vol.286 (5), p.991-1002</ispartof><rights>2018 Federation of European Biochemical Societies</rights><rights>2018 Federation of European Biochemical Societies.</rights><rights>Copyright © 2019 Federation of European Biochemical Societies</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4591-7a667cb0a4146eb74081f69cb08b5bb167598854364b1a5d219e472a0ff8c48c3</citedby><cites>FETCH-LOGICAL-c4591-7a667cb0a4146eb74081f69cb08b5bb167598854364b1a5d219e472a0ff8c48c3</cites><orcidid>0000-0002-1031-9328 ; 0000-0003-2828-7907 ; 0000-0002-9081-2103</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ffebs.14701$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ffebs.14701$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30430736$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vitali, Victoria</creatorcontrib><creatorcontrib>Jozefkowicz, Cintia</creatorcontrib><creatorcontrib>Canessa Fortuna, Agustina</creatorcontrib><creatorcontrib>Soto, Gabriela</creatorcontrib><creatorcontrib>González Flecha, F. Luis</creatorcontrib><creatorcontrib>Alleva, Karina</creatorcontrib><title>Cooperativity in proton sensing by PIP aquaporins</title><title>The FEBS journal</title><addtitle>FEBS J</addtitle><description>One of the most intriguing properties of plasma membrane intrinsic protein (PIP) aquaporins (AQPs) is their ability to modulate water transport by sensing different levels of intracellular pH through the assembly of homo‐ and heterotetrameric molecular species in the plasma membrane. In this work, using a phenomenological modeling approach, we demonstrate that cooperativity in PIP biological response cannot be directly attributed to a cooperative proton binding, as it is usually considered, since it could also be the consequence of a cooperative conformation transition between open and closed states of the channel. Moreover, our results show that, when mixed populations of homo‐ and heterotetrameric PIP channels are coexpressed in the plasma membrane of the same cell, the observed decrease in the degree of positive cooperativity would result from the simultaneous presence of molecular species with different levels of proton sensing. Indeed, the random mixing between different PIP paralogues as subunits in a single tetramer, plus the possibility of mixed populations of homo‐ and heterotetrameric PIP channels widen the spectrum of cooperative responses of a cell membrane. Our approach offers a deep understanding of cooperative transport of AQP channels, as members of a multiprotein family where the relevant proton binding sites of each member have not been clearly elucidated yet. One of the most amazing properties of PIP aquaporins is their ability to cooperatively modulate water transport. We used a phenomenological modeling approach to show that this cooperativity can be attributed not only to the binding of protons but also to the conformational transition. We also uncover that mixed populations of homo‐ and heterotetrameric PIP channels in a cell membrane allow a wide spectrum of cooperative responses improving the effective water transport of that cell.</description><subject>Animals</subject><subject>aquaporin</subject><subject>Aquaporins</subject><subject>Aquaporins - chemistry</subject><subject>Aquaporins - metabolism</subject><subject>Binding sites</subject><subject>Cell Membrane - metabolism</subject><subject>Cell membranes</subject><subject>Channels</subject><subject>Cooperativity</subject><subject>Detection</subject><subject>Hydrogen-Ion Concentration</subject><subject>Membrane proteins</subject><subject>paralogues</subject><subject>Populations</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Protons</subject><subject>stoichiometry</subject><subject>Transport</subject><subject>Water - metabolism</subject><subject>Water transport</subject><subject>Xenopus laevis</subject><subject>Xenopus Proteins - chemistry</subject><subject>Xenopus Proteins - metabolism</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90E9LwzAYBvAgipvTix9ACl5E6Eyavz3q2HQwcKCCt5B0qWR0Tde0Sr-9mZ07ePC95CX8eHh5ALhEcIzC3OVG-zEiHKIjMEScJDFhVBwfdvI-AGferyHElKTpKRhgSDDkmA0BmjhXmVo19tM2XWTLqKpd48rIm9Lb8iPSXbScLyO1bVXlalv6c3CSq8Kbi_07Am-z6evkKV48P84n94s4IzRFMVeM8UxDRRBhRnMCBcpZGn6EplojxmkqBCWYEY0UXSUoNYQnCua5yIjI8Ajc9LnhoG1rfCM31memKFRpXOtlgjAWCeWcBXr9h65dW5fhuqAExzwRKQnqtldZ7byvTS6r2m5U3UkE5a5IuStS_hQZ8NU-stUbszrQ3-YCQD34soXp_omSs-nDSx_6DfTbexk</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Vitali, Victoria</creator><creator>Jozefkowicz, Cintia</creator><creator>Canessa Fortuna, Agustina</creator><creator>Soto, Gabriela</creator><creator>González Flecha, F. Luis</creator><creator>Alleva, Karina</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1031-9328</orcidid><orcidid>https://orcid.org/0000-0003-2828-7907</orcidid><orcidid>https://orcid.org/0000-0002-9081-2103</orcidid></search><sort><creationdate>201903</creationdate><title>Cooperativity in proton sensing by PIP aquaporins</title><author>Vitali, Victoria ; Jozefkowicz, Cintia ; Canessa Fortuna, Agustina ; Soto, Gabriela ; González Flecha, F. Luis ; Alleva, Karina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4591-7a667cb0a4146eb74081f69cb08b5bb167598854364b1a5d219e472a0ff8c48c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>aquaporin</topic><topic>Aquaporins</topic><topic>Aquaporins - chemistry</topic><topic>Aquaporins - metabolism</topic><topic>Binding sites</topic><topic>Cell Membrane - metabolism</topic><topic>Cell membranes</topic><topic>Channels</topic><topic>Cooperativity</topic><topic>Detection</topic><topic>Hydrogen-Ion Concentration</topic><topic>Membrane proteins</topic><topic>paralogues</topic><topic>Populations</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Protons</topic><topic>stoichiometry</topic><topic>Transport</topic><topic>Water - metabolism</topic><topic>Water transport</topic><topic>Xenopus laevis</topic><topic>Xenopus Proteins - chemistry</topic><topic>Xenopus Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vitali, Victoria</creatorcontrib><creatorcontrib>Jozefkowicz, Cintia</creatorcontrib><creatorcontrib>Canessa Fortuna, Agustina</creatorcontrib><creatorcontrib>Soto, Gabriela</creatorcontrib><creatorcontrib>González Flecha, F. Luis</creatorcontrib><creatorcontrib>Alleva, Karina</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vitali, Victoria</au><au>Jozefkowicz, Cintia</au><au>Canessa Fortuna, Agustina</au><au>Soto, Gabriela</au><au>González Flecha, F. Luis</au><au>Alleva, Karina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cooperativity in proton sensing by PIP aquaporins</atitle><jtitle>The FEBS journal</jtitle><addtitle>FEBS J</addtitle><date>2019-03</date><risdate>2019</risdate><volume>286</volume><issue>5</issue><spage>991</spage><epage>1002</epage><pages>991-1002</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>One of the most intriguing properties of plasma membrane intrinsic protein (PIP) aquaporins (AQPs) is their ability to modulate water transport by sensing different levels of intracellular pH through the assembly of homo‐ and heterotetrameric molecular species in the plasma membrane. In this work, using a phenomenological modeling approach, we demonstrate that cooperativity in PIP biological response cannot be directly attributed to a cooperative proton binding, as it is usually considered, since it could also be the consequence of a cooperative conformation transition between open and closed states of the channel. Moreover, our results show that, when mixed populations of homo‐ and heterotetrameric PIP channels are coexpressed in the plasma membrane of the same cell, the observed decrease in the degree of positive cooperativity would result from the simultaneous presence of molecular species with different levels of proton sensing. Indeed, the random mixing between different PIP paralogues as subunits in a single tetramer, plus the possibility of mixed populations of homo‐ and heterotetrameric PIP channels widen the spectrum of cooperative responses of a cell membrane. Our approach offers a deep understanding of cooperative transport of AQP channels, as members of a multiprotein family where the relevant proton binding sites of each member have not been clearly elucidated yet. One of the most amazing properties of PIP aquaporins is their ability to cooperatively modulate water transport. We used a phenomenological modeling approach to show that this cooperativity can be attributed not only to the binding of protons but also to the conformational transition. We also uncover that mixed populations of homo‐ and heterotetrameric PIP channels in a cell membrane allow a wide spectrum of cooperative responses improving the effective water transport of that cell.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>30430736</pmid><doi>10.1111/febs.14701</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1031-9328</orcidid><orcidid>https://orcid.org/0000-0003-2828-7907</orcidid><orcidid>https://orcid.org/0000-0002-9081-2103</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-464X
ispartof The FEBS journal, 2019-03, Vol.286 (5), p.991-1002
issn 1742-464X
1742-4658
language eng
recordid cdi_proquest_miscellaneous_2133825776
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Free Full-Text Journals in Chemistry
subjects Animals
aquaporin
Aquaporins
Aquaporins - chemistry
Aquaporins - metabolism
Binding sites
Cell Membrane - metabolism
Cell membranes
Channels
Cooperativity
Detection
Hydrogen-Ion Concentration
Membrane proteins
paralogues
Populations
Protein Conformation
Proteins
Protons
stoichiometry
Transport
Water - metabolism
Water transport
Xenopus laevis
Xenopus Proteins - chemistry
Xenopus Proteins - metabolism
title Cooperativity in proton sensing by PIP aquaporins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A37%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cooperativity%20in%20proton%20sensing%20by%20PIP%20aquaporins&rft.jtitle=The%20FEBS%20journal&rft.au=Vitali,%20Victoria&rft.date=2019-03&rft.volume=286&rft.issue=5&rft.spage=991&rft.epage=1002&rft.pages=991-1002&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/febs.14701&rft_dat=%3Cproquest_cross%3E2187372894%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2187372894&rft_id=info:pmid/30430736&rfr_iscdi=true