Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes
Oxygen, one of the most abundant elements on Earth, often forms an undesired interstitial impurity or ceramic phase (such as an oxide particle) in metallic materials. Even when it adds strength, oxygen doping renders metals brittle 1 – 3 . Here we show that oxygen can take the form of ordered oxygen...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2018-11, Vol.563 (7732), p.546-550 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 550 |
---|---|
container_issue | 7732 |
container_start_page | 546 |
container_title | Nature (London) |
container_volume | 563 |
creator | Lei, Zhifeng Liu, Xiongjun Wu, Yuan Wang, Hui Jiang, Suihe Wang, Shudao Hui, Xidong Wu, Yidong Gault, Baptiste Kontis, Paraskevas Raabe, Dierk Gu, Lin Zhang, Qinghua Chen, Houwen Wang, Hongtao Liu, Jiabin An, Ke Zeng, Qiaoshi Nieh, Tai-Gang Lu, Zhaoping |
description | Oxygen, one of the most abundant elements on Earth, often forms an undesired interstitial impurity or ceramic phase (such as an oxide particle) in metallic materials. Even when it adds strength, oxygen doping renders metals brittle
1
–
3
. Here we show that oxygen can take the form of ordered oxygen complexes, a state in between oxide particles and frequently occurring random interstitials. Unlike traditional interstitial strengthening
4
,
5
, such ordered interstitial complexes lead to unprecedented enhancement in both strength and ductility in compositionally complex solid solutions, the so-called high-entropy alloys (HEAs)
6
–
10
. The tensile strength is enhanced (by 48.5 ± 1.8 per cent) and ductility is substantially improved (by 95.2 ± 8.1 per cent) when doping a model TiZrHfNb HEA with 2.0 atomic per cent oxygen, thus breaking the long-standing strength–ductility trade-off
11
. The oxygen complexes are ordered nanoscale regions within the HEA characterized by (O, Zr, Ti)-rich atomic complexes whose formation is promoted by the existence of chemical short-range ordering among some of the substitutional matrix elements in the HEAs. Carbon has been reported to improve strength and ductility simultaneously in face-centred cubic HEAs
12
, by lowering the stacking fault energy and increasing the lattice friction stress. By contrast, the ordered interstitial complexes described here change the dislocation shear mode from planar slip to wavy slip, and promote double cross-slip and thus dislocation multiplication through the formation of Frank–Read sources (a mechanism explaining the generation of multiple dislocations) during deformation. This ordered interstitial complex-mediated strain-hardening mechanism should be particularly useful in Ti-, Zr- and Hf-containing alloys, in which interstitial elements are highly undesirable owing to their embrittlement effects, and in alloys where tuning the stacking fault energy and exploiting athermal transformations
13
do not lead to property enhancement. These results provide insight into the role of interstitial solid solutions and associated ordering strengthening mechanisms in metallic materials.
Ordered oxygen complexes in high-entropy alloys enhance both strength and ductility in these compositionally complex solid solutions. |
doi_str_mv | 10.1038/s41586-018-0685-y |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2133825492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A573175315</galeid><sourcerecordid>A573175315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c640t-d6b6ccf032aff308f6c4149c4b57ac142a1cac8c1e0203aa20dc3a1c8a2658d93</originalsourceid><addsrcrecordid>eNp10l2LEzEUBuBBFLeu_gBvJOiNIrPmazLpZSmrLiwKWvEypJkz0ywzSTfJSOffm9LVtdIlF4HkOYdw8hbFS4IvCGbyQ-SkkqLERJZYyKqcHhUzwmtRciHrx8UMY5pvJBNnxbMYbzDGFan50-KMYU7nguBZsbp0G-0MNCimAK5LG6Rdg5rRJNvbNCHrkEYb221KcCn47YR03_sJ_bIa-dBAyKV-N3XgkPHDtocdxOfFk1b3EV7c7efFj4-Xq-Xn8vrrp6vl4ro0guNUNmItjGkxo7ptGZatMJzwueHrqtaGcKqJ0UYaAphipjXFjWH5TGoqKtnM2Xnx9tB3G_ztCDGpwUYDfa8d-DEqShiTtOJzmumb_-iNH4PLr8uKyzwMLsW96nQPyrrWp6DNvqlaVDUjdcVIlVV5QuUJQNC9d9DafHzkX5_wZmtv1b_o4gTKq4HBmpNd3x0VZJNglzo9xqiuvn87tu8ftovVz-WXY00O2gQfY4BWbYMddJgUwWofPHUInsrBU_vgqSnXvLqb77geoPlb8SdpGdADiPnKdRDuP-Dhrr8Bzzvevg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2148961486</pqid></control><display><type>article</type><title>Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Lei, Zhifeng ; Liu, Xiongjun ; Wu, Yuan ; Wang, Hui ; Jiang, Suihe ; Wang, Shudao ; Hui, Xidong ; Wu, Yidong ; Gault, Baptiste ; Kontis, Paraskevas ; Raabe, Dierk ; Gu, Lin ; Zhang, Qinghua ; Chen, Houwen ; Wang, Hongtao ; Liu, Jiabin ; An, Ke ; Zeng, Qiaoshi ; Nieh, Tai-Gang ; Lu, Zhaoping</creator><creatorcontrib>Lei, Zhifeng ; Liu, Xiongjun ; Wu, Yuan ; Wang, Hui ; Jiang, Suihe ; Wang, Shudao ; Hui, Xidong ; Wu, Yidong ; Gault, Baptiste ; Kontis, Paraskevas ; Raabe, Dierk ; Gu, Lin ; Zhang, Qinghua ; Chen, Houwen ; Wang, Hongtao ; Liu, Jiabin ; An, Ke ; Zeng, Qiaoshi ; Nieh, Tai-Gang ; Lu, Zhaoping</creatorcontrib><description>Oxygen, one of the most abundant elements on Earth, often forms an undesired interstitial impurity or ceramic phase (such as an oxide particle) in metallic materials. Even when it adds strength, oxygen doping renders metals brittle
1
–
3
. Here we show that oxygen can take the form of ordered oxygen complexes, a state in between oxide particles and frequently occurring random interstitials. Unlike traditional interstitial strengthening
4
,
5
, such ordered interstitial complexes lead to unprecedented enhancement in both strength and ductility in compositionally complex solid solutions, the so-called high-entropy alloys (HEAs)
6
–
10
. The tensile strength is enhanced (by 48.5 ± 1.8 per cent) and ductility is substantially improved (by 95.2 ± 8.1 per cent) when doping a model TiZrHfNb HEA with 2.0 atomic per cent oxygen, thus breaking the long-standing strength–ductility trade-off
11
. The oxygen complexes are ordered nanoscale regions within the HEA characterized by (O, Zr, Ti)-rich atomic complexes whose formation is promoted by the existence of chemical short-range ordering among some of the substitutional matrix elements in the HEAs. Carbon has been reported to improve strength and ductility simultaneously in face-centred cubic HEAs
12
, by lowering the stacking fault energy and increasing the lattice friction stress. By contrast, the ordered interstitial complexes described here change the dislocation shear mode from planar slip to wavy slip, and promote double cross-slip and thus dislocation multiplication through the formation of Frank–Read sources (a mechanism explaining the generation of multiple dislocations) during deformation. This ordered interstitial complex-mediated strain-hardening mechanism should be particularly useful in Ti-, Zr- and Hf-containing alloys, in which interstitial elements are highly undesirable owing to their embrittlement effects, and in alloys where tuning the stacking fault energy and exploiting athermal transformations
13
do not lead to property enhancement. These results provide insight into the role of interstitial solid solutions and associated ordering strengthening mechanisms in metallic materials.
Ordered oxygen complexes in high-entropy alloys enhance both strength and ductility in these compositionally complex solid solutions.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-018-0685-y</identifier><identifier>PMID: 30429610</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 639/301/1023/1026 ; 639/301/1023/303 ; Alloying elements ; Alloys ; Carbon ; Chemical properties ; Cross slip ; Cubic lattice ; Deformation mechanisms ; Dislocation ; Dislocations ; Doping ; Ductility ; Entropy ; Hafnium base alloys ; Heavy metals ; High entropy alloys ; Humanities and Social Sciences ; Interstitial impurities ; Interstitials ; Letter ; Mechanical properties ; Metals (Materials) ; multidisciplinary ; Nitrogen ; Nuclear facilities ; Organic chemistry ; Oxides ; Oxygen ; Science ; Science (multidisciplinary) ; Single crystals ; Solid solutions ; Specialty metals industry ; Stacking fault energy ; Strain hardening ; Strength ; Titanium ; Zirconium</subject><ispartof>Nature (London), 2018-11, Vol.563 (7732), p.546-550</ispartof><rights>Springer Nature Limited 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Nov 22, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c640t-d6b6ccf032aff308f6c4149c4b57ac142a1cac8c1e0203aa20dc3a1c8a2658d93</citedby><cites>FETCH-LOGICAL-c640t-d6b6ccf032aff308f6c4149c4b57ac142a1cac8c1e0203aa20dc3a1c8a2658d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-018-0685-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-018-0685-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30429610$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lei, Zhifeng</creatorcontrib><creatorcontrib>Liu, Xiongjun</creatorcontrib><creatorcontrib>Wu, Yuan</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Jiang, Suihe</creatorcontrib><creatorcontrib>Wang, Shudao</creatorcontrib><creatorcontrib>Hui, Xidong</creatorcontrib><creatorcontrib>Wu, Yidong</creatorcontrib><creatorcontrib>Gault, Baptiste</creatorcontrib><creatorcontrib>Kontis, Paraskevas</creatorcontrib><creatorcontrib>Raabe, Dierk</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Zhang, Qinghua</creatorcontrib><creatorcontrib>Chen, Houwen</creatorcontrib><creatorcontrib>Wang, Hongtao</creatorcontrib><creatorcontrib>Liu, Jiabin</creatorcontrib><creatorcontrib>An, Ke</creatorcontrib><creatorcontrib>Zeng, Qiaoshi</creatorcontrib><creatorcontrib>Nieh, Tai-Gang</creatorcontrib><creatorcontrib>Lu, Zhaoping</creatorcontrib><title>Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Oxygen, one of the most abundant elements on Earth, often forms an undesired interstitial impurity or ceramic phase (such as an oxide particle) in metallic materials. Even when it adds strength, oxygen doping renders metals brittle
1
–
3
. Here we show that oxygen can take the form of ordered oxygen complexes, a state in between oxide particles and frequently occurring random interstitials. Unlike traditional interstitial strengthening
4
,
5
, such ordered interstitial complexes lead to unprecedented enhancement in both strength and ductility in compositionally complex solid solutions, the so-called high-entropy alloys (HEAs)
6
–
10
. The tensile strength is enhanced (by 48.5 ± 1.8 per cent) and ductility is substantially improved (by 95.2 ± 8.1 per cent) when doping a model TiZrHfNb HEA with 2.0 atomic per cent oxygen, thus breaking the long-standing strength–ductility trade-off
11
. The oxygen complexes are ordered nanoscale regions within the HEA characterized by (O, Zr, Ti)-rich atomic complexes whose formation is promoted by the existence of chemical short-range ordering among some of the substitutional matrix elements in the HEAs. Carbon has been reported to improve strength and ductility simultaneously in face-centred cubic HEAs
12
, by lowering the stacking fault energy and increasing the lattice friction stress. By contrast, the ordered interstitial complexes described here change the dislocation shear mode from planar slip to wavy slip, and promote double cross-slip and thus dislocation multiplication through the formation of Frank–Read sources (a mechanism explaining the generation of multiple dislocations) during deformation. This ordered interstitial complex-mediated strain-hardening mechanism should be particularly useful in Ti-, Zr- and Hf-containing alloys, in which interstitial elements are highly undesirable owing to their embrittlement effects, and in alloys where tuning the stacking fault energy and exploiting athermal transformations
13
do not lead to property enhancement. These results provide insight into the role of interstitial solid solutions and associated ordering strengthening mechanisms in metallic materials.
Ordered oxygen complexes in high-entropy alloys enhance both strength and ductility in these compositionally complex solid solutions.</description><subject>119/118</subject><subject>639/301/1023/1026</subject><subject>639/301/1023/303</subject><subject>Alloying elements</subject><subject>Alloys</subject><subject>Carbon</subject><subject>Chemical properties</subject><subject>Cross slip</subject><subject>Cubic lattice</subject><subject>Deformation mechanisms</subject><subject>Dislocation</subject><subject>Dislocations</subject><subject>Doping</subject><subject>Ductility</subject><subject>Entropy</subject><subject>Hafnium base alloys</subject><subject>Heavy metals</subject><subject>High entropy alloys</subject><subject>Humanities and Social Sciences</subject><subject>Interstitial impurities</subject><subject>Interstitials</subject><subject>Letter</subject><subject>Mechanical properties</subject><subject>Metals (Materials)</subject><subject>multidisciplinary</subject><subject>Nitrogen</subject><subject>Nuclear facilities</subject><subject>Organic chemistry</subject><subject>Oxides</subject><subject>Oxygen</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Single crystals</subject><subject>Solid solutions</subject><subject>Specialty metals industry</subject><subject>Stacking fault energy</subject><subject>Strain hardening</subject><subject>Strength</subject><subject>Titanium</subject><subject>Zirconium</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10l2LEzEUBuBBFLeu_gBvJOiNIrPmazLpZSmrLiwKWvEypJkz0ywzSTfJSOffm9LVtdIlF4HkOYdw8hbFS4IvCGbyQ-SkkqLERJZYyKqcHhUzwmtRciHrx8UMY5pvJBNnxbMYbzDGFan50-KMYU7nguBZsbp0G-0MNCimAK5LG6Rdg5rRJNvbNCHrkEYb221KcCn47YR03_sJ_bIa-dBAyKV-N3XgkPHDtocdxOfFk1b3EV7c7efFj4-Xq-Xn8vrrp6vl4ro0guNUNmItjGkxo7ptGZatMJzwueHrqtaGcKqJ0UYaAphipjXFjWH5TGoqKtnM2Xnx9tB3G_ztCDGpwUYDfa8d-DEqShiTtOJzmumb_-iNH4PLr8uKyzwMLsW96nQPyrrWp6DNvqlaVDUjdcVIlVV5QuUJQNC9d9DafHzkX5_wZmtv1b_o4gTKq4HBmpNd3x0VZJNglzo9xqiuvn87tu8ftovVz-WXY00O2gQfY4BWbYMddJgUwWofPHUInsrBU_vgqSnXvLqb77geoPlb8SdpGdADiPnKdRDuP-Dhrr8Bzzvevg</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Lei, Zhifeng</creator><creator>Liu, Xiongjun</creator><creator>Wu, Yuan</creator><creator>Wang, Hui</creator><creator>Jiang, Suihe</creator><creator>Wang, Shudao</creator><creator>Hui, Xidong</creator><creator>Wu, Yidong</creator><creator>Gault, Baptiste</creator><creator>Kontis, Paraskevas</creator><creator>Raabe, Dierk</creator><creator>Gu, Lin</creator><creator>Zhang, Qinghua</creator><creator>Chen, Houwen</creator><creator>Wang, Hongtao</creator><creator>Liu, Jiabin</creator><creator>An, Ke</creator><creator>Zeng, Qiaoshi</creator><creator>Nieh, Tai-Gang</creator><creator>Lu, Zhaoping</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201811</creationdate><title>Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes</title><author>Lei, Zhifeng ; Liu, Xiongjun ; Wu, Yuan ; Wang, Hui ; Jiang, Suihe ; Wang, Shudao ; Hui, Xidong ; Wu, Yidong ; Gault, Baptiste ; Kontis, Paraskevas ; Raabe, Dierk ; Gu, Lin ; Zhang, Qinghua ; Chen, Houwen ; Wang, Hongtao ; Liu, Jiabin ; An, Ke ; Zeng, Qiaoshi ; Nieh, Tai-Gang ; Lu, Zhaoping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c640t-d6b6ccf032aff308f6c4149c4b57ac142a1cac8c1e0203aa20dc3a1c8a2658d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>119/118</topic><topic>639/301/1023/1026</topic><topic>639/301/1023/303</topic><topic>Alloying elements</topic><topic>Alloys</topic><topic>Carbon</topic><topic>Chemical properties</topic><topic>Cross slip</topic><topic>Cubic lattice</topic><topic>Deformation mechanisms</topic><topic>Dislocation</topic><topic>Dislocations</topic><topic>Doping</topic><topic>Ductility</topic><topic>Entropy</topic><topic>Hafnium base alloys</topic><topic>Heavy metals</topic><topic>High entropy alloys</topic><topic>Humanities and Social Sciences</topic><topic>Interstitial impurities</topic><topic>Interstitials</topic><topic>Letter</topic><topic>Mechanical properties</topic><topic>Metals (Materials)</topic><topic>multidisciplinary</topic><topic>Nitrogen</topic><topic>Nuclear facilities</topic><topic>Organic chemistry</topic><topic>Oxides</topic><topic>Oxygen</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Single crystals</topic><topic>Solid solutions</topic><topic>Specialty metals industry</topic><topic>Stacking fault energy</topic><topic>Strain hardening</topic><topic>Strength</topic><topic>Titanium</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei, Zhifeng</creatorcontrib><creatorcontrib>Liu, Xiongjun</creatorcontrib><creatorcontrib>Wu, Yuan</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Jiang, Suihe</creatorcontrib><creatorcontrib>Wang, Shudao</creatorcontrib><creatorcontrib>Hui, Xidong</creatorcontrib><creatorcontrib>Wu, Yidong</creatorcontrib><creatorcontrib>Gault, Baptiste</creatorcontrib><creatorcontrib>Kontis, Paraskevas</creatorcontrib><creatorcontrib>Raabe, Dierk</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Zhang, Qinghua</creatorcontrib><creatorcontrib>Chen, Houwen</creatorcontrib><creatorcontrib>Wang, Hongtao</creatorcontrib><creatorcontrib>Liu, Jiabin</creatorcontrib><creatorcontrib>An, Ke</creatorcontrib><creatorcontrib>Zeng, Qiaoshi</creatorcontrib><creatorcontrib>Nieh, Tai-Gang</creatorcontrib><creatorcontrib>Lu, Zhaoping</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei, Zhifeng</au><au>Liu, Xiongjun</au><au>Wu, Yuan</au><au>Wang, Hui</au><au>Jiang, Suihe</au><au>Wang, Shudao</au><au>Hui, Xidong</au><au>Wu, Yidong</au><au>Gault, Baptiste</au><au>Kontis, Paraskevas</au><au>Raabe, Dierk</au><au>Gu, Lin</au><au>Zhang, Qinghua</au><au>Chen, Houwen</au><au>Wang, Hongtao</au><au>Liu, Jiabin</au><au>An, Ke</au><au>Zeng, Qiaoshi</au><au>Nieh, Tai-Gang</au><au>Lu, Zhaoping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2018-11</date><risdate>2018</risdate><volume>563</volume><issue>7732</issue><spage>546</spage><epage>550</epage><pages>546-550</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Oxygen, one of the most abundant elements on Earth, often forms an undesired interstitial impurity or ceramic phase (such as an oxide particle) in metallic materials. Even when it adds strength, oxygen doping renders metals brittle
1
–
3
. Here we show that oxygen can take the form of ordered oxygen complexes, a state in between oxide particles and frequently occurring random interstitials. Unlike traditional interstitial strengthening
4
,
5
, such ordered interstitial complexes lead to unprecedented enhancement in both strength and ductility in compositionally complex solid solutions, the so-called high-entropy alloys (HEAs)
6
–
10
. The tensile strength is enhanced (by 48.5 ± 1.8 per cent) and ductility is substantially improved (by 95.2 ± 8.1 per cent) when doping a model TiZrHfNb HEA with 2.0 atomic per cent oxygen, thus breaking the long-standing strength–ductility trade-off
11
. The oxygen complexes are ordered nanoscale regions within the HEA characterized by (O, Zr, Ti)-rich atomic complexes whose formation is promoted by the existence of chemical short-range ordering among some of the substitutional matrix elements in the HEAs. Carbon has been reported to improve strength and ductility simultaneously in face-centred cubic HEAs
12
, by lowering the stacking fault energy and increasing the lattice friction stress. By contrast, the ordered interstitial complexes described here change the dislocation shear mode from planar slip to wavy slip, and promote double cross-slip and thus dislocation multiplication through the formation of Frank–Read sources (a mechanism explaining the generation of multiple dislocations) during deformation. This ordered interstitial complex-mediated strain-hardening mechanism should be particularly useful in Ti-, Zr- and Hf-containing alloys, in which interstitial elements are highly undesirable owing to their embrittlement effects, and in alloys where tuning the stacking fault energy and exploiting athermal transformations
13
do not lead to property enhancement. These results provide insight into the role of interstitial solid solutions and associated ordering strengthening mechanisms in metallic materials.
Ordered oxygen complexes in high-entropy alloys enhance both strength and ductility in these compositionally complex solid solutions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30429610</pmid><doi>10.1038/s41586-018-0685-y</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2018-11, Vol.563 (7732), p.546-550 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_2133825492 |
source | SpringerLink Journals; Nature Journals Online |
subjects | 119/118 639/301/1023/1026 639/301/1023/303 Alloying elements Alloys Carbon Chemical properties Cross slip Cubic lattice Deformation mechanisms Dislocation Dislocations Doping Ductility Entropy Hafnium base alloys Heavy metals High entropy alloys Humanities and Social Sciences Interstitial impurities Interstitials Letter Mechanical properties Metals (Materials) multidisciplinary Nitrogen Nuclear facilities Organic chemistry Oxides Oxygen Science Science (multidisciplinary) Single crystals Solid solutions Specialty metals industry Stacking fault energy Strain hardening Strength Titanium Zirconium |
title | Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A01%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20strength%20and%20ductility%20in%20a%20high-entropy%20alloy%20via%20ordered%20oxygen%20complexes&rft.jtitle=Nature%20(London)&rft.au=Lei,%20Zhifeng&rft.date=2018-11&rft.volume=563&rft.issue=7732&rft.spage=546&rft.epage=550&rft.pages=546-550&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-018-0685-y&rft_dat=%3Cgale_proqu%3EA573175315%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2148961486&rft_id=info:pmid/30429610&rft_galeid=A573175315&rfr_iscdi=true |