Desiccation Resistance and Micro-Climate Adaptation: Cuticular Hydrocarbon Signatures of Different Argentine Ant Supercolonies Across California
Cuticular hydrocarbons (CHCs), the dominant fraction of the insects’ epicuticle and the primary barrier to desiccation, form the basis for a wide range of chemical signaling systems. In eusocial insects, CHCs are key mediators of nestmate recognition, and colony identity appears to be maintained thr...
Gespeichert in:
Veröffentlicht in: | Journal of chemical ecology 2018-12, Vol.44 (12), p.1101-1114 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1114 |
---|---|
container_issue | 12 |
container_start_page | 1101 |
container_title | Journal of chemical ecology |
container_volume | 44 |
creator | Buellesbach, Jan Whyte, Brian A. Cash, Elizabeth Gibson, Joshua D. Scheckel, Kelsey J. Sandidge, Rebecca Tsutsui, Neil D. |
description | Cuticular hydrocarbons (CHCs), the dominant fraction of the insects’ epicuticle and the primary barrier to desiccation, form the basis for a wide range of chemical signaling systems. In eusocial insects, CHCs are key mediators of nestmate recognition, and colony identity appears to be maintained through a uniform CHC profile. In the unicolonial Argentine ant
Linepithema humile
, an unparalleled invasive expansion has led to vast supercolonies whose nestmates can still recognize each other across thousands of miles. CHC profiles are expected to display considerable variation as they adapt to fundamentally differing environmental conditions across the Argentine ant’s expanded range, yet this variation would largely conflict with the vastly extended nestmate recognition based on CHC uniformity. To shed light on these seemingly contradictory selective pressures, we attempt to decipher which CHC classes enable adaptation to such a wide array of environmental conditions and contrast them with the overall CHC profile uniformity postulated to maintain nestmate recognition.
n
-Alkanes and
n
-alkenes showed the largest adaptability to environmental conditions most closely associated with desiccation, pointing at their function for water-proofing. Trimethyl alkanes, on the other hand, were reduced in environments associated with higher desiccation stress. However, CHC patterns correlated with environmental conditions were largely overriden when taking overall CHC variation across the expanded range of
L. humile
into account, resulting in conserved colony-specific CHC signatures. This delivers intriguing insights into the hierarchy of CHC functionality integrating both adaptation to a wide array of different climatic conditions and the maintenance of a universally accepted chemical profile. |
doi_str_mv | 10.1007/s10886-018-1029-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2133825302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2133074657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-2d7271c3963aa9a0b79953959ffed7f5445afcb16872cdd4ee2440674c61a8bb3</originalsourceid><addsrcrecordid>eNp1kcFu3CAQhlHUqtlu-gC5REi95EI7gA12bysnbSolipS0Z4QxXhF5YQv4sG-RRw7ZTVqpUk4D4pv_H-ZH6JTCFwogvyYKTSMI0IZQYC3ZHaEFrSUntBb0HVoAtA0Bzukx-pjSAwAw0dQf0DGHigMXfIEeL2xyxujsgsd35Zyy9sZi7Qd840wMpJvcRmeLV4Pe5j33DXdzdmaedMRXuyEGo2Nf2u_d2us8R5twGPGFG0cbrc94FdelOF80yu1-3tpowhS8K-CqWKSEOz25MUTv9Al6P-op2U8vdYl-f7_81V2R69sfP7vVNTFcskzYIJmkhreCa91q6GXb1ryt22I6yLGuqlqPpqeikcwMQ2UtqyoQsjKC6qbv-RKdH3S3MfyZbcpq45Kx06S9DXNSjHLesJoDK-jn_9CHMEdfpttTICtRlr5E9EDtfxTtqLaxbC7uFAX1HJc6xKVKXOo5LrUrPWcvynO_scPfjtd8CsAOQCpPfm3jP-u3VZ8AiK-iaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2133074657</pqid></control><display><type>article</type><title>Desiccation Resistance and Micro-Climate Adaptation: Cuticular Hydrocarbon Signatures of Different Argentine Ant Supercolonies Across California</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Buellesbach, Jan ; Whyte, Brian A. ; Cash, Elizabeth ; Gibson, Joshua D. ; Scheckel, Kelsey J. ; Sandidge, Rebecca ; Tsutsui, Neil D.</creator><creatorcontrib>Buellesbach, Jan ; Whyte, Brian A. ; Cash, Elizabeth ; Gibson, Joshua D. ; Scheckel, Kelsey J. ; Sandidge, Rebecca ; Tsutsui, Neil D.</creatorcontrib><description>Cuticular hydrocarbons (CHCs), the dominant fraction of the insects’ epicuticle and the primary barrier to desiccation, form the basis for a wide range of chemical signaling systems. In eusocial insects, CHCs are key mediators of nestmate recognition, and colony identity appears to be maintained through a uniform CHC profile. In the unicolonial Argentine ant
Linepithema humile
, an unparalleled invasive expansion has led to vast supercolonies whose nestmates can still recognize each other across thousands of miles. CHC profiles are expected to display considerable variation as they adapt to fundamentally differing environmental conditions across the Argentine ant’s expanded range, yet this variation would largely conflict with the vastly extended nestmate recognition based on CHC uniformity. To shed light on these seemingly contradictory selective pressures, we attempt to decipher which CHC classes enable adaptation to such a wide array of environmental conditions and contrast them with the overall CHC profile uniformity postulated to maintain nestmate recognition.
n
-Alkanes and
n
-alkenes showed the largest adaptability to environmental conditions most closely associated with desiccation, pointing at their function for water-proofing. Trimethyl alkanes, on the other hand, were reduced in environments associated with higher desiccation stress. However, CHC patterns correlated with environmental conditions were largely overriden when taking overall CHC variation across the expanded range of
L. humile
into account, resulting in conserved colony-specific CHC signatures. This delivers intriguing insights into the hierarchy of CHC functionality integrating both adaptation to a wide array of different climatic conditions and the maintenance of a universally accepted chemical profile.</description><identifier>ISSN: 0098-0331</identifier><identifier>EISSN: 1573-1561</identifier><identifier>DOI: 10.1007/s10886-018-1029-y</identifier><identifier>PMID: 30430363</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptability ; Adaptation ; Adaptation, Physiological ; Agriculture ; Alkanes ; Alkanes - analysis ; Alkanes - isolation & purification ; Alkanes - metabolism ; Alkenes ; Animals ; Ants - physiology ; Argentina ; Biochemistry ; Biodiversity ; Biological Microscopy ; Biomedical and Life Sciences ; California ; Climate ; Climate adaptation ; Climatic conditions ; Colonies ; Cuticular hydrocarbons ; Cutting resistance ; Desiccation ; Ecology ; Entomology ; Environmental conditions ; Epicuticle ; Gas Chromatography-Mass Spectrometry ; Hydrocarbons ; Hydrocarbons - analysis ; Hydrocarbons - isolation & purification ; Hydrocarbons - metabolism ; Insects ; Introduced Species ; Invasive insects ; Life Sciences ; Linepithema humile ; Liquid-Liquid Extraction ; Microclimate ; Organic chemistry ; Recognition ; Signalling systems ; Signatures ; Variation ; Waterproofing</subject><ispartof>Journal of chemical ecology, 2018-12, Vol.44 (12), p.1101-1114</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Journal of Chemical Ecology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-2d7271c3963aa9a0b79953959ffed7f5445afcb16872cdd4ee2440674c61a8bb3</citedby><cites>FETCH-LOGICAL-c372t-2d7271c3963aa9a0b79953959ffed7f5445afcb16872cdd4ee2440674c61a8bb3</cites><orcidid>0000-0001-8493-692X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10886-018-1029-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10886-018-1029-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30430363$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Buellesbach, Jan</creatorcontrib><creatorcontrib>Whyte, Brian A.</creatorcontrib><creatorcontrib>Cash, Elizabeth</creatorcontrib><creatorcontrib>Gibson, Joshua D.</creatorcontrib><creatorcontrib>Scheckel, Kelsey J.</creatorcontrib><creatorcontrib>Sandidge, Rebecca</creatorcontrib><creatorcontrib>Tsutsui, Neil D.</creatorcontrib><title>Desiccation Resistance and Micro-Climate Adaptation: Cuticular Hydrocarbon Signatures of Different Argentine Ant Supercolonies Across California</title><title>Journal of chemical ecology</title><addtitle>J Chem Ecol</addtitle><addtitle>J Chem Ecol</addtitle><description>Cuticular hydrocarbons (CHCs), the dominant fraction of the insects’ epicuticle and the primary barrier to desiccation, form the basis for a wide range of chemical signaling systems. In eusocial insects, CHCs are key mediators of nestmate recognition, and colony identity appears to be maintained through a uniform CHC profile. In the unicolonial Argentine ant
Linepithema humile
, an unparalleled invasive expansion has led to vast supercolonies whose nestmates can still recognize each other across thousands of miles. CHC profiles are expected to display considerable variation as they adapt to fundamentally differing environmental conditions across the Argentine ant’s expanded range, yet this variation would largely conflict with the vastly extended nestmate recognition based on CHC uniformity. To shed light on these seemingly contradictory selective pressures, we attempt to decipher which CHC classes enable adaptation to such a wide array of environmental conditions and contrast them with the overall CHC profile uniformity postulated to maintain nestmate recognition.
n
-Alkanes and
n
-alkenes showed the largest adaptability to environmental conditions most closely associated with desiccation, pointing at their function for water-proofing. Trimethyl alkanes, on the other hand, were reduced in environments associated with higher desiccation stress. However, CHC patterns correlated with environmental conditions were largely overriden when taking overall CHC variation across the expanded range of
L. humile
into account, resulting in conserved colony-specific CHC signatures. This delivers intriguing insights into the hierarchy of CHC functionality integrating both adaptation to a wide array of different climatic conditions and the maintenance of a universally accepted chemical profile.</description><subject>Adaptability</subject><subject>Adaptation</subject><subject>Adaptation, Physiological</subject><subject>Agriculture</subject><subject>Alkanes</subject><subject>Alkanes - analysis</subject><subject>Alkanes - isolation & purification</subject><subject>Alkanes - metabolism</subject><subject>Alkenes</subject><subject>Animals</subject><subject>Ants - physiology</subject><subject>Argentina</subject><subject>Biochemistry</subject><subject>Biodiversity</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>California</subject><subject>Climate</subject><subject>Climate adaptation</subject><subject>Climatic conditions</subject><subject>Colonies</subject><subject>Cuticular hydrocarbons</subject><subject>Cutting resistance</subject><subject>Desiccation</subject><subject>Ecology</subject><subject>Entomology</subject><subject>Environmental conditions</subject><subject>Epicuticle</subject><subject>Gas Chromatography-Mass Spectrometry</subject><subject>Hydrocarbons</subject><subject>Hydrocarbons - analysis</subject><subject>Hydrocarbons - isolation & purification</subject><subject>Hydrocarbons - metabolism</subject><subject>Insects</subject><subject>Introduced Species</subject><subject>Invasive insects</subject><subject>Life Sciences</subject><subject>Linepithema humile</subject><subject>Liquid-Liquid Extraction</subject><subject>Microclimate</subject><subject>Organic chemistry</subject><subject>Recognition</subject><subject>Signalling systems</subject><subject>Signatures</subject><subject>Variation</subject><subject>Waterproofing</subject><issn>0098-0331</issn><issn>1573-1561</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kcFu3CAQhlHUqtlu-gC5REi95EI7gA12bysnbSolipS0Z4QxXhF5YQv4sG-RRw7ZTVqpUk4D4pv_H-ZH6JTCFwogvyYKTSMI0IZQYC3ZHaEFrSUntBb0HVoAtA0Bzukx-pjSAwAw0dQf0DGHigMXfIEeL2xyxujsgsd35Zyy9sZi7Qd840wMpJvcRmeLV4Pe5j33DXdzdmaedMRXuyEGo2Nf2u_d2us8R5twGPGFG0cbrc94FdelOF80yu1-3tpowhS8K-CqWKSEOz25MUTv9Al6P-op2U8vdYl-f7_81V2R69sfP7vVNTFcskzYIJmkhreCa91q6GXb1ryt22I6yLGuqlqPpqeikcwMQ2UtqyoQsjKC6qbv-RKdH3S3MfyZbcpq45Kx06S9DXNSjHLesJoDK-jn_9CHMEdfpttTICtRlr5E9EDtfxTtqLaxbC7uFAX1HJc6xKVKXOo5LrUrPWcvynO_scPfjtd8CsAOQCpPfm3jP-u3VZ8AiK-iaw</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Buellesbach, Jan</creator><creator>Whyte, Brian A.</creator><creator>Cash, Elizabeth</creator><creator>Gibson, Joshua D.</creator><creator>Scheckel, Kelsey J.</creator><creator>Sandidge, Rebecca</creator><creator>Tsutsui, Neil D.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8493-692X</orcidid></search><sort><creationdate>20181201</creationdate><title>Desiccation Resistance and Micro-Climate Adaptation: Cuticular Hydrocarbon Signatures of Different Argentine Ant Supercolonies Across California</title><author>Buellesbach, Jan ; Whyte, Brian A. ; Cash, Elizabeth ; Gibson, Joshua D. ; Scheckel, Kelsey J. ; Sandidge, Rebecca ; Tsutsui, Neil D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-2d7271c3963aa9a0b79953959ffed7f5445afcb16872cdd4ee2440674c61a8bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptability</topic><topic>Adaptation</topic><topic>Adaptation, Physiological</topic><topic>Agriculture</topic><topic>Alkanes</topic><topic>Alkanes - analysis</topic><topic>Alkanes - isolation & purification</topic><topic>Alkanes - metabolism</topic><topic>Alkenes</topic><topic>Animals</topic><topic>Ants - physiology</topic><topic>Argentina</topic><topic>Biochemistry</topic><topic>Biodiversity</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>California</topic><topic>Climate</topic><topic>Climate adaptation</topic><topic>Climatic conditions</topic><topic>Colonies</topic><topic>Cuticular hydrocarbons</topic><topic>Cutting resistance</topic><topic>Desiccation</topic><topic>Ecology</topic><topic>Entomology</topic><topic>Environmental conditions</topic><topic>Epicuticle</topic><topic>Gas Chromatography-Mass Spectrometry</topic><topic>Hydrocarbons</topic><topic>Hydrocarbons - analysis</topic><topic>Hydrocarbons - isolation & purification</topic><topic>Hydrocarbons - metabolism</topic><topic>Insects</topic><topic>Introduced Species</topic><topic>Invasive insects</topic><topic>Life Sciences</topic><topic>Linepithema humile</topic><topic>Liquid-Liquid Extraction</topic><topic>Microclimate</topic><topic>Organic chemistry</topic><topic>Recognition</topic><topic>Signalling systems</topic><topic>Signatures</topic><topic>Variation</topic><topic>Waterproofing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buellesbach, Jan</creatorcontrib><creatorcontrib>Whyte, Brian A.</creatorcontrib><creatorcontrib>Cash, Elizabeth</creatorcontrib><creatorcontrib>Gibson, Joshua D.</creatorcontrib><creatorcontrib>Scheckel, Kelsey J.</creatorcontrib><creatorcontrib>Sandidge, Rebecca</creatorcontrib><creatorcontrib>Tsutsui, Neil D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buellesbach, Jan</au><au>Whyte, Brian A.</au><au>Cash, Elizabeth</au><au>Gibson, Joshua D.</au><au>Scheckel, Kelsey J.</au><au>Sandidge, Rebecca</au><au>Tsutsui, Neil D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Desiccation Resistance and Micro-Climate Adaptation: Cuticular Hydrocarbon Signatures of Different Argentine Ant Supercolonies Across California</atitle><jtitle>Journal of chemical ecology</jtitle><stitle>J Chem Ecol</stitle><addtitle>J Chem Ecol</addtitle><date>2018-12-01</date><risdate>2018</risdate><volume>44</volume><issue>12</issue><spage>1101</spage><epage>1114</epage><pages>1101-1114</pages><issn>0098-0331</issn><eissn>1573-1561</eissn><abstract>Cuticular hydrocarbons (CHCs), the dominant fraction of the insects’ epicuticle and the primary barrier to desiccation, form the basis for a wide range of chemical signaling systems. In eusocial insects, CHCs are key mediators of nestmate recognition, and colony identity appears to be maintained through a uniform CHC profile. In the unicolonial Argentine ant
Linepithema humile
, an unparalleled invasive expansion has led to vast supercolonies whose nestmates can still recognize each other across thousands of miles. CHC profiles are expected to display considerable variation as they adapt to fundamentally differing environmental conditions across the Argentine ant’s expanded range, yet this variation would largely conflict with the vastly extended nestmate recognition based on CHC uniformity. To shed light on these seemingly contradictory selective pressures, we attempt to decipher which CHC classes enable adaptation to such a wide array of environmental conditions and contrast them with the overall CHC profile uniformity postulated to maintain nestmate recognition.
n
-Alkanes and
n
-alkenes showed the largest adaptability to environmental conditions most closely associated with desiccation, pointing at their function for water-proofing. Trimethyl alkanes, on the other hand, were reduced in environments associated with higher desiccation stress. However, CHC patterns correlated with environmental conditions were largely overriden when taking overall CHC variation across the expanded range of
L. humile
into account, resulting in conserved colony-specific CHC signatures. This delivers intriguing insights into the hierarchy of CHC functionality integrating both adaptation to a wide array of different climatic conditions and the maintenance of a universally accepted chemical profile.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>30430363</pmid><doi>10.1007/s10886-018-1029-y</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8493-692X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-0331 |
ispartof | Journal of chemical ecology, 2018-12, Vol.44 (12), p.1101-1114 |
issn | 0098-0331 1573-1561 |
language | eng |
recordid | cdi_proquest_miscellaneous_2133825302 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Adaptability Adaptation Adaptation, Physiological Agriculture Alkanes Alkanes - analysis Alkanes - isolation & purification Alkanes - metabolism Alkenes Animals Ants - physiology Argentina Biochemistry Biodiversity Biological Microscopy Biomedical and Life Sciences California Climate Climate adaptation Climatic conditions Colonies Cuticular hydrocarbons Cutting resistance Desiccation Ecology Entomology Environmental conditions Epicuticle Gas Chromatography-Mass Spectrometry Hydrocarbons Hydrocarbons - analysis Hydrocarbons - isolation & purification Hydrocarbons - metabolism Insects Introduced Species Invasive insects Life Sciences Linepithema humile Liquid-Liquid Extraction Microclimate Organic chemistry Recognition Signalling systems Signatures Variation Waterproofing |
title | Desiccation Resistance and Micro-Climate Adaptation: Cuticular Hydrocarbon Signatures of Different Argentine Ant Supercolonies Across California |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A20%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Desiccation%20Resistance%20and%20Micro-Climate%20Adaptation:%20Cuticular%20Hydrocarbon%20Signatures%20of%20Different%20Argentine%20Ant%20Supercolonies%20Across%20California&rft.jtitle=Journal%20of%20chemical%20ecology&rft.au=Buellesbach,%20Jan&rft.date=2018-12-01&rft.volume=44&rft.issue=12&rft.spage=1101&rft.epage=1114&rft.pages=1101-1114&rft.issn=0098-0331&rft.eissn=1573-1561&rft_id=info:doi/10.1007/s10886-018-1029-y&rft_dat=%3Cproquest_cross%3E2133074657%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2133074657&rft_id=info:pmid/30430363&rfr_iscdi=true |