Automated Scoring of Obstructive Sleep Apnea and Hypopnea Events Using Short-Term Electrocardiogram Recordings

Obstructive sleep apnea or hypopnea causes a pause or reduction in airflow with continuous breathing effort. The aim of this study is to identify individual apnea and hypopnea events from normal breathing events using wavelet-based features of 5-s ECG signals (sampling rate = 250 Hz) and estimate th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2009-11, Vol.13 (6), p.1057-1067
Hauptverfasser: Khandoker, A.H., Gubbi, J., Palaniswami, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Obstructive sleep apnea or hypopnea causes a pause or reduction in airflow with continuous breathing effort. The aim of this study is to identify individual apnea and hypopnea events from normal breathing events using wavelet-based features of 5-s ECG signals (sampling rate = 250 Hz) and estimate the surrogate apnea index (AI)/hypopnea index (HI) (AHI). Total 82 535 ECG epochs (each of 5-s duration) from normal breathing during sleep, 1638 ECG epochs from 689 hypopnea events, and 3151 ECG epochs from 1862 apnea events were collected from 17 patients in the training set. Two-staged feedforward neural network model was trained using features from ECG signals with leave-one-patient-out cross-validation technique. At the first stage of classification, events (apnea and hypopnea) were classified from normal breathing events, and at the second stage, hypopneas were identified from apnea. Independent test was performed on 16 subjects' ECGs containing 483 hypopnea and 1352 apnea events. The cross-validation and independent test accuracies of apnea and hypopnea detection were found to be 94.84% and 76.82%, respectively, for training set, and 94.72% and 79.77%, respectively, for test set. The Bland-Altman plots showed unbiased estimations with standard deviations of plusmn 2.19, plusmn 2.16, and plusmn 3.64 events/h for AI, HI, and AHI, respectively. Results indicate the possibility of recognizing apnea/hypopnea events based on shorter segments of ECG signals.
ISSN:1089-7771
2168-2194
1558-0032
2168-2208
DOI:10.1109/TITB.2009.2031639