Longitudinal 19F magnetic resonance imaging of brain oxygenation in a mouse model of vascular cognitive impairment using a cryogenic radiofrequency coil
Introduction We explored the use of a perfluoro-15-crown-5 ether nanoemulsion (PFC) for measuring tissue oxygenation using a mouse model of vascular cognitive impairment. Methods Seventeen C57BL/6 mice underwent stereotactic injection of PFC coupled to a fluorophore into the striatum and corpus call...
Gespeichert in:
Veröffentlicht in: | Magma (New York, N.Y.) N.Y.), 2019-02, Vol.32 (1), p.105-114 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 114 |
---|---|
container_issue | 1 |
container_start_page | 105 |
container_title | Magma (New York, N.Y.) |
container_volume | 32 |
creator | Khalil, Ahmed A. Mueller, Susanne Foddis, Marco Mosch, Larissa Lips, Janet Przesdzing, Ingo Temme, Sebastian Flögel, Ulrich Dirnagl, Ulrich Boehm-Sturm, Philipp |
description | Introduction
We explored the use of a perfluoro-15-crown-5 ether nanoemulsion (PFC) for measuring tissue oxygenation using a mouse model of vascular cognitive impairment.
Methods
Seventeen C57BL/6 mice underwent stereotactic injection of PFC coupled to a fluorophore into the striatum and corpus callosum. Combined 1H/19F magnetic resonance imaging (MRI) to localize the PFC and R
1
mapping to assess pO
2
were performed. The effect of gas challenges on measured R
1
was investigated. All mice then underwent bilateral implantation of microcoils around the common carotid arteries to induce global cerebral hypoperfusion. 19F-MRI and R
1
mapping were performed 1 day, 1 week, and 4 weeks after microcoil implantation. In vivo R
1
values were converted to pO
2
through in vitro calibration. Tissue reaction to the PFC was assessed through ex vivo immunohistochemistry of microglial infiltration.
Results
R
1
increased with increasing oxygen concentrations both in vitro and in vivo and the strength of the 19F signal remained largely stable over 4 weeks. In the two mice that received all four scans, tissue pO
2
decreased after microcoil implantation and recovered 4 weeks later. We observed infiltration of the PFC deposits by microglia.
Discussion
Despite remaining technical challenges, intracerebrally injected PFC is suitable for monitoring brain oxygenation in vivo. |
doi_str_mv | 10.1007/s10334-018-0712-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2132740190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132740190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-f6e8ab46eb87a94ffc1713cc75588eaf5eedb0d1569ea41672ef1d5fb9cafc7f3</originalsourceid><addsrcrecordid>eNp9kc-OFCEQh4nRuOPqA3gxHL20UkD_O5qNqyaTeNEzqaaLDptuGKF7M_MmPq50ZvXoBULxq68CH2NvQXwAIdqPGYRSuhLQVaIFWZ2fsQOoWlZd08BzdhB901W11OqGvcr5QQgJtVAv2Y0SWoLU_YH9PsYw-XUbfcCZQ3_PF5wCrd7yRDkGDJa4LzUfJh4dHxL6wOP5MlHA1cfAyxH5ErdMZR1p3lOPmO02Y-I2TsGv_nFnnNCnhcLKt7zDkNt0iQWzj8LRR5fo10bBXkqXn1-zFw7nTG-e9lv28_7zj7uv1fH7l293n46V1VKvlWuow0E3NHQt9to5Cy0oa9u67jpCVxONgxihbnpCDU0rycFYu6G36Gzr1C17f-WeUizj82oWny3NMwYqjzISlGy1gF6UKFyjNsWcEzlzSuVr0sWAMLsQcxViihCzCzHn0vPuCb8NC43_Ov4aKAF5DeRyFSZK5iFuqcjI_6H-AQa5m2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132740190</pqid></control><display><type>article</type><title>Longitudinal 19F magnetic resonance imaging of brain oxygenation in a mouse model of vascular cognitive impairment using a cryogenic radiofrequency coil</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Khalil, Ahmed A. ; Mueller, Susanne ; Foddis, Marco ; Mosch, Larissa ; Lips, Janet ; Przesdzing, Ingo ; Temme, Sebastian ; Flögel, Ulrich ; Dirnagl, Ulrich ; Boehm-Sturm, Philipp</creator><creatorcontrib>Khalil, Ahmed A. ; Mueller, Susanne ; Foddis, Marco ; Mosch, Larissa ; Lips, Janet ; Przesdzing, Ingo ; Temme, Sebastian ; Flögel, Ulrich ; Dirnagl, Ulrich ; Boehm-Sturm, Philipp</creatorcontrib><description>Introduction
We explored the use of a perfluoro-15-crown-5 ether nanoemulsion (PFC) for measuring tissue oxygenation using a mouse model of vascular cognitive impairment.
Methods
Seventeen C57BL/6 mice underwent stereotactic injection of PFC coupled to a fluorophore into the striatum and corpus callosum. Combined 1H/19F magnetic resonance imaging (MRI) to localize the PFC and R
1
mapping to assess pO
2
were performed. The effect of gas challenges on measured R
1
was investigated. All mice then underwent bilateral implantation of microcoils around the common carotid arteries to induce global cerebral hypoperfusion. 19F-MRI and R
1
mapping were performed 1 day, 1 week, and 4 weeks after microcoil implantation. In vivo R
1
values were converted to pO
2
through in vitro calibration. Tissue reaction to the PFC was assessed through ex vivo immunohistochemistry of microglial infiltration.
Results
R
1
increased with increasing oxygen concentrations both in vitro and in vivo and the strength of the 19F signal remained largely stable over 4 weeks. In the two mice that received all four scans, tissue pO
2
decreased after microcoil implantation and recovered 4 weeks later. We observed infiltration of the PFC deposits by microglia.
Discussion
Despite remaining technical challenges, intracerebrally injected PFC is suitable for monitoring brain oxygenation in vivo.</description><identifier>ISSN: 0968-5243</identifier><identifier>EISSN: 1352-8661</identifier><identifier>DOI: 10.1007/s10334-018-0712-x</identifier><identifier>PMID: 30421249</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Animals ; Biomedical Engineering and Bioengineering ; Brain - metabolism ; Calibration ; Cognition Disorders - diagnostic imaging ; Cognitive Dysfunction - diagnostic imaging ; Computer Appl. in Life Sciences ; Corpus Callosum - diagnostic imaging ; Corpus Striatum - diagnostic imaging ; Crown Ethers ; Disease Models, Animal ; Emulsions ; Fluorine - chemistry ; Fluorine-19 Magnetic Resonance Imaging - instrumentation ; Fluorine-19 Magnetic Resonance Imaging - methods ; Fluorocarbons - chemistry ; Health Informatics ; Image Processing, Computer-Assisted ; Imaging ; Lung - chemistry ; Male ; Medicine ; Medicine & Public Health ; Mice ; Mice, Inbred C57BL ; Nanoparticles - chemistry ; Oxygen - metabolism ; Radio Waves ; Radiology ; Reproducibility of Results ; Research Article ; Solid State Physics</subject><ispartof>Magma (New York, N.Y.), 2019-02, Vol.32 (1), p.105-114</ispartof><rights>European Society for Magnetic Resonance in Medicine and Biology (ESMRMB) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-f6e8ab46eb87a94ffc1713cc75588eaf5eedb0d1569ea41672ef1d5fb9cafc7f3</citedby><cites>FETCH-LOGICAL-c424t-f6e8ab46eb87a94ffc1713cc75588eaf5eedb0d1569ea41672ef1d5fb9cafc7f3</cites><orcidid>0000-0001-8777-4823 ; 0000-0002-5053-2211 ; 0000-0003-3011-4386 ; 0000-0002-4458-8657 ; 0000-0001-7181-4392 ; 0000-0003-0755-6119 ; 0000-0003-1752-4305</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10334-018-0712-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10334-018-0712-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30421249$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khalil, Ahmed A.</creatorcontrib><creatorcontrib>Mueller, Susanne</creatorcontrib><creatorcontrib>Foddis, Marco</creatorcontrib><creatorcontrib>Mosch, Larissa</creatorcontrib><creatorcontrib>Lips, Janet</creatorcontrib><creatorcontrib>Przesdzing, Ingo</creatorcontrib><creatorcontrib>Temme, Sebastian</creatorcontrib><creatorcontrib>Flögel, Ulrich</creatorcontrib><creatorcontrib>Dirnagl, Ulrich</creatorcontrib><creatorcontrib>Boehm-Sturm, Philipp</creatorcontrib><title>Longitudinal 19F magnetic resonance imaging of brain oxygenation in a mouse model of vascular cognitive impairment using a cryogenic radiofrequency coil</title><title>Magma (New York, N.Y.)</title><addtitle>Magn Reson Mater Phy</addtitle><addtitle>MAGMA</addtitle><description>Introduction
We explored the use of a perfluoro-15-crown-5 ether nanoemulsion (PFC) for measuring tissue oxygenation using a mouse model of vascular cognitive impairment.
Methods
Seventeen C57BL/6 mice underwent stereotactic injection of PFC coupled to a fluorophore into the striatum and corpus callosum. Combined 1H/19F magnetic resonance imaging (MRI) to localize the PFC and R
1
mapping to assess pO
2
were performed. The effect of gas challenges on measured R
1
was investigated. All mice then underwent bilateral implantation of microcoils around the common carotid arteries to induce global cerebral hypoperfusion. 19F-MRI and R
1
mapping were performed 1 day, 1 week, and 4 weeks after microcoil implantation. In vivo R
1
values were converted to pO
2
through in vitro calibration. Tissue reaction to the PFC was assessed through ex vivo immunohistochemistry of microglial infiltration.
Results
R
1
increased with increasing oxygen concentrations both in vitro and in vivo and the strength of the 19F signal remained largely stable over 4 weeks. In the two mice that received all four scans, tissue pO
2
decreased after microcoil implantation and recovered 4 weeks later. We observed infiltration of the PFC deposits by microglia.
Discussion
Despite remaining technical challenges, intracerebrally injected PFC is suitable for monitoring brain oxygenation in vivo.</description><subject>Animals</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Brain - metabolism</subject><subject>Calibration</subject><subject>Cognition Disorders - diagnostic imaging</subject><subject>Cognitive Dysfunction - diagnostic imaging</subject><subject>Computer Appl. in Life Sciences</subject><subject>Corpus Callosum - diagnostic imaging</subject><subject>Corpus Striatum - diagnostic imaging</subject><subject>Crown Ethers</subject><subject>Disease Models, Animal</subject><subject>Emulsions</subject><subject>Fluorine - chemistry</subject><subject>Fluorine-19 Magnetic Resonance Imaging - instrumentation</subject><subject>Fluorine-19 Magnetic Resonance Imaging - methods</subject><subject>Fluorocarbons - chemistry</subject><subject>Health Informatics</subject><subject>Image Processing, Computer-Assisted</subject><subject>Imaging</subject><subject>Lung - chemistry</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Nanoparticles - chemistry</subject><subject>Oxygen - metabolism</subject><subject>Radio Waves</subject><subject>Radiology</subject><subject>Reproducibility of Results</subject><subject>Research Article</subject><subject>Solid State Physics</subject><issn>0968-5243</issn><issn>1352-8661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc-OFCEQh4nRuOPqA3gxHL20UkD_O5qNqyaTeNEzqaaLDptuGKF7M_MmPq50ZvXoBULxq68CH2NvQXwAIdqPGYRSuhLQVaIFWZ2fsQOoWlZd08BzdhB901W11OqGvcr5QQgJtVAv2Y0SWoLU_YH9PsYw-XUbfcCZQ3_PF5wCrd7yRDkGDJa4LzUfJh4dHxL6wOP5MlHA1cfAyxH5ErdMZR1p3lOPmO02Y-I2TsGv_nFnnNCnhcLKt7zDkNt0iQWzj8LRR5fo10bBXkqXn1-zFw7nTG-e9lv28_7zj7uv1fH7l293n46V1VKvlWuow0E3NHQt9to5Cy0oa9u67jpCVxONgxihbnpCDU0rycFYu6G36Gzr1C17f-WeUizj82oWny3NMwYqjzISlGy1gF6UKFyjNsWcEzlzSuVr0sWAMLsQcxViihCzCzHn0vPuCb8NC43_Ov4aKAF5DeRyFSZK5iFuqcjI_6H-AQa5m2A</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Khalil, Ahmed A.</creator><creator>Mueller, Susanne</creator><creator>Foddis, Marco</creator><creator>Mosch, Larissa</creator><creator>Lips, Janet</creator><creator>Przesdzing, Ingo</creator><creator>Temme, Sebastian</creator><creator>Flögel, Ulrich</creator><creator>Dirnagl, Ulrich</creator><creator>Boehm-Sturm, Philipp</creator><general>Springer International Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8777-4823</orcidid><orcidid>https://orcid.org/0000-0002-5053-2211</orcidid><orcidid>https://orcid.org/0000-0003-3011-4386</orcidid><orcidid>https://orcid.org/0000-0002-4458-8657</orcidid><orcidid>https://orcid.org/0000-0001-7181-4392</orcidid><orcidid>https://orcid.org/0000-0003-0755-6119</orcidid><orcidid>https://orcid.org/0000-0003-1752-4305</orcidid></search><sort><creationdate>20190201</creationdate><title>Longitudinal 19F magnetic resonance imaging of brain oxygenation in a mouse model of vascular cognitive impairment using a cryogenic radiofrequency coil</title><author>Khalil, Ahmed A. ; Mueller, Susanne ; Foddis, Marco ; Mosch, Larissa ; Lips, Janet ; Przesdzing, Ingo ; Temme, Sebastian ; Flögel, Ulrich ; Dirnagl, Ulrich ; Boehm-Sturm, Philipp</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-f6e8ab46eb87a94ffc1713cc75588eaf5eedb0d1569ea41672ef1d5fb9cafc7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Brain - metabolism</topic><topic>Calibration</topic><topic>Cognition Disorders - diagnostic imaging</topic><topic>Cognitive Dysfunction - diagnostic imaging</topic><topic>Computer Appl. in Life Sciences</topic><topic>Corpus Callosum - diagnostic imaging</topic><topic>Corpus Striatum - diagnostic imaging</topic><topic>Crown Ethers</topic><topic>Disease Models, Animal</topic><topic>Emulsions</topic><topic>Fluorine - chemistry</topic><topic>Fluorine-19 Magnetic Resonance Imaging - instrumentation</topic><topic>Fluorine-19 Magnetic Resonance Imaging - methods</topic><topic>Fluorocarbons - chemistry</topic><topic>Health Informatics</topic><topic>Image Processing, Computer-Assisted</topic><topic>Imaging</topic><topic>Lung - chemistry</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Nanoparticles - chemistry</topic><topic>Oxygen - metabolism</topic><topic>Radio Waves</topic><topic>Radiology</topic><topic>Reproducibility of Results</topic><topic>Research Article</topic><topic>Solid State Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khalil, Ahmed A.</creatorcontrib><creatorcontrib>Mueller, Susanne</creatorcontrib><creatorcontrib>Foddis, Marco</creatorcontrib><creatorcontrib>Mosch, Larissa</creatorcontrib><creatorcontrib>Lips, Janet</creatorcontrib><creatorcontrib>Przesdzing, Ingo</creatorcontrib><creatorcontrib>Temme, Sebastian</creatorcontrib><creatorcontrib>Flögel, Ulrich</creatorcontrib><creatorcontrib>Dirnagl, Ulrich</creatorcontrib><creatorcontrib>Boehm-Sturm, Philipp</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Magma (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khalil, Ahmed A.</au><au>Mueller, Susanne</au><au>Foddis, Marco</au><au>Mosch, Larissa</au><au>Lips, Janet</au><au>Przesdzing, Ingo</au><au>Temme, Sebastian</au><au>Flögel, Ulrich</au><au>Dirnagl, Ulrich</au><au>Boehm-Sturm, Philipp</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Longitudinal 19F magnetic resonance imaging of brain oxygenation in a mouse model of vascular cognitive impairment using a cryogenic radiofrequency coil</atitle><jtitle>Magma (New York, N.Y.)</jtitle><stitle>Magn Reson Mater Phy</stitle><addtitle>MAGMA</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>32</volume><issue>1</issue><spage>105</spage><epage>114</epage><pages>105-114</pages><issn>0968-5243</issn><eissn>1352-8661</eissn><abstract>Introduction
We explored the use of a perfluoro-15-crown-5 ether nanoemulsion (PFC) for measuring tissue oxygenation using a mouse model of vascular cognitive impairment.
Methods
Seventeen C57BL/6 mice underwent stereotactic injection of PFC coupled to a fluorophore into the striatum and corpus callosum. Combined 1H/19F magnetic resonance imaging (MRI) to localize the PFC and R
1
mapping to assess pO
2
were performed. The effect of gas challenges on measured R
1
was investigated. All mice then underwent bilateral implantation of microcoils around the common carotid arteries to induce global cerebral hypoperfusion. 19F-MRI and R
1
mapping were performed 1 day, 1 week, and 4 weeks after microcoil implantation. In vivo R
1
values were converted to pO
2
through in vitro calibration. Tissue reaction to the PFC was assessed through ex vivo immunohistochemistry of microglial infiltration.
Results
R
1
increased with increasing oxygen concentrations both in vitro and in vivo and the strength of the 19F signal remained largely stable over 4 weeks. In the two mice that received all four scans, tissue pO
2
decreased after microcoil implantation and recovered 4 weeks later. We observed infiltration of the PFC deposits by microglia.
Discussion
Despite remaining technical challenges, intracerebrally injected PFC is suitable for monitoring brain oxygenation in vivo.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>30421249</pmid><doi>10.1007/s10334-018-0712-x</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8777-4823</orcidid><orcidid>https://orcid.org/0000-0002-5053-2211</orcidid><orcidid>https://orcid.org/0000-0003-3011-4386</orcidid><orcidid>https://orcid.org/0000-0002-4458-8657</orcidid><orcidid>https://orcid.org/0000-0001-7181-4392</orcidid><orcidid>https://orcid.org/0000-0003-0755-6119</orcidid><orcidid>https://orcid.org/0000-0003-1752-4305</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0968-5243 |
ispartof | Magma (New York, N.Y.), 2019-02, Vol.32 (1), p.105-114 |
issn | 0968-5243 1352-8661 |
language | eng |
recordid | cdi_proquest_miscellaneous_2132740190 |
source | MEDLINE; SpringerNature Journals |
subjects | Animals Biomedical Engineering and Bioengineering Brain - metabolism Calibration Cognition Disorders - diagnostic imaging Cognitive Dysfunction - diagnostic imaging Computer Appl. in Life Sciences Corpus Callosum - diagnostic imaging Corpus Striatum - diagnostic imaging Crown Ethers Disease Models, Animal Emulsions Fluorine - chemistry Fluorine-19 Magnetic Resonance Imaging - instrumentation Fluorine-19 Magnetic Resonance Imaging - methods Fluorocarbons - chemistry Health Informatics Image Processing, Computer-Assisted Imaging Lung - chemistry Male Medicine Medicine & Public Health Mice Mice, Inbred C57BL Nanoparticles - chemistry Oxygen - metabolism Radio Waves Radiology Reproducibility of Results Research Article Solid State Physics |
title | Longitudinal 19F magnetic resonance imaging of brain oxygenation in a mouse model of vascular cognitive impairment using a cryogenic radiofrequency coil |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T12%3A24%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Longitudinal%2019F%20magnetic%20resonance%20imaging%20of%20brain%20oxygenation%20in%20a%20mouse%20model%20of%20vascular%20cognitive%20impairment%20using%20a%20cryogenic%20radiofrequency%20coil&rft.jtitle=Magma%20(New%20York,%20N.Y.)&rft.au=Khalil,%20Ahmed%20A.&rft.date=2019-02-01&rft.volume=32&rft.issue=1&rft.spage=105&rft.epage=114&rft.pages=105-114&rft.issn=0968-5243&rft.eissn=1352-8661&rft_id=info:doi/10.1007/s10334-018-0712-x&rft_dat=%3Cproquest_cross%3E2132740190%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132740190&rft_id=info:pmid/30421249&rfr_iscdi=true |