Direct Patterning of p‑Type-Doped Few-layer WSe2 Nanoelectronic Devices by Oxidation Scanning Probe Lithography
Direct, robust, and high-resolution patterning methods are needed to downscale the lateral size of two-dimensional materials to observe new properties and optimize the overall processing of these materials. In this work, we report a fabrication process where the initial microchannel of a few-layer W...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2018-11, Vol.10 (46), p.40054-40061 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 40061 |
---|---|
container_issue | 46 |
container_start_page | 40054 |
container_title | ACS applied materials & interfaces |
container_volume | 10 |
creator | Dago, A. I Ryu, Y. K Palomares, F. J Garcia, R |
description | Direct, robust, and high-resolution patterning methods are needed to downscale the lateral size of two-dimensional materials to observe new properties and optimize the overall processing of these materials. In this work, we report a fabrication process where the initial microchannel of a few-layer WSe2 field-effect transistor is treated by oxygen plasma to form a self-limited oxide layer on top of the flake. This thin oxide layer has a double role here. First, it induces the so-called p-doping effect in the device. Second, it enables the fabrication of oxide nanoribbons with controlled width and depth by oxidation scanning probe lithography (o-SPL). After the removal of the oxides by deionized H2O etching, a nanoribbon-based field-effect transistor is produced. Oxidation SPL is a direct writing technique that minimizes the use of resists and lithographic steps. We have applied this process to fabricate a 5 nm thick WSe2 field-effect transistor, where the channel consists in an array of 5 parallel 350 nm half-pitch nanoribbons. The electrical measurements show that the device presents an improved conduction level compared to the starting thin-layer transistor and a positive threshold voltage shift associated to the p-doping treatment. The method enables to pattern devices with sub-50 nm feature sizes. We have patterned an array of 10 oxide nanowires with 36 nm half-pitch by oxidation SPL. |
doi_str_mv | 10.1021/acsami.8b15937 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2132739679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132739679</sourcerecordid><originalsourceid>FETCH-LOGICAL-a263t-7e4ac79d25b6435e12d2e75c118e26b1dfcf220fb830987849419e484477df4e3</originalsourceid><addsrcrecordid>eNo9kL1OwzAcxCMEEqWwMntESCn-ShyPqKWAVNFKLWKMHOef1lVqp3YKZOMVeEWehEIR091wdzr9ouiS4AHBlNwoHdTGDLKCJJKJo6hHJOdxRhN6_O85P43OQlhjnDKKk160HRkPukUz1bbgrbFL5CrUfH18LroG4pFroERjeItr1YFHL3Og6ElZB_W-5Z01Go3g1WgIqOjQ9N2UqjXOorlW9ndt5l0BaGLalVt61ay68-ikUnWAiz_tR8_ju8XwIZ5M7x-Ht5NY0ZS1sQCutJAlTYqUswQILSmIRBOSAU0LUla6ohRXRcawzETGJScSeMa5EGXFgfWjq8Nu4912B6HNNyZoqGtlwe1CTgmjgslUyH30-hDdI8zXbuft_lhOcP7DNT9wzf-4sm_SQ23H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132739679</pqid></control><display><type>article</type><title>Direct Patterning of p‑Type-Doped Few-layer WSe2 Nanoelectronic Devices by Oxidation Scanning Probe Lithography</title><source>American Chemical Society Journals</source><creator>Dago, A. I ; Ryu, Y. K ; Palomares, F. J ; Garcia, R</creator><creatorcontrib>Dago, A. I ; Ryu, Y. K ; Palomares, F. J ; Garcia, R</creatorcontrib><description>Direct, robust, and high-resolution patterning methods are needed to downscale the lateral size of two-dimensional materials to observe new properties and optimize the overall processing of these materials. In this work, we report a fabrication process where the initial microchannel of a few-layer WSe2 field-effect transistor is treated by oxygen plasma to form a self-limited oxide layer on top of the flake. This thin oxide layer has a double role here. First, it induces the so-called p-doping effect in the device. Second, it enables the fabrication of oxide nanoribbons with controlled width and depth by oxidation scanning probe lithography (o-SPL). After the removal of the oxides by deionized H2O etching, a nanoribbon-based field-effect transistor is produced. Oxidation SPL is a direct writing technique that minimizes the use of resists and lithographic steps. We have applied this process to fabricate a 5 nm thick WSe2 field-effect transistor, where the channel consists in an array of 5 parallel 350 nm half-pitch nanoribbons. The electrical measurements show that the device presents an improved conduction level compared to the starting thin-layer transistor and a positive threshold voltage shift associated to the p-doping treatment. The method enables to pattern devices with sub-50 nm feature sizes. We have patterned an array of 10 oxide nanowires with 36 nm half-pitch by oxidation SPL.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.8b15937</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied materials & interfaces, 2018-11, Vol.10 (46), p.40054-40061</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7115-1928</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.8b15937$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.8b15937$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Dago, A. I</creatorcontrib><creatorcontrib>Ryu, Y. K</creatorcontrib><creatorcontrib>Palomares, F. J</creatorcontrib><creatorcontrib>Garcia, R</creatorcontrib><title>Direct Patterning of p‑Type-Doped Few-layer WSe2 Nanoelectronic Devices by Oxidation Scanning Probe Lithography</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Direct, robust, and high-resolution patterning methods are needed to downscale the lateral size of two-dimensional materials to observe new properties and optimize the overall processing of these materials. In this work, we report a fabrication process where the initial microchannel of a few-layer WSe2 field-effect transistor is treated by oxygen plasma to form a self-limited oxide layer on top of the flake. This thin oxide layer has a double role here. First, it induces the so-called p-doping effect in the device. Second, it enables the fabrication of oxide nanoribbons with controlled width and depth by oxidation scanning probe lithography (o-SPL). After the removal of the oxides by deionized H2O etching, a nanoribbon-based field-effect transistor is produced. Oxidation SPL is a direct writing technique that minimizes the use of resists and lithographic steps. We have applied this process to fabricate a 5 nm thick WSe2 field-effect transistor, where the channel consists in an array of 5 parallel 350 nm half-pitch nanoribbons. The electrical measurements show that the device presents an improved conduction level compared to the starting thin-layer transistor and a positive threshold voltage shift associated to the p-doping treatment. The method enables to pattern devices with sub-50 nm feature sizes. We have patterned an array of 10 oxide nanowires with 36 nm half-pitch by oxidation SPL.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kL1OwzAcxCMEEqWwMntESCn-ShyPqKWAVNFKLWKMHOef1lVqp3YKZOMVeEWehEIR091wdzr9ouiS4AHBlNwoHdTGDLKCJJKJo6hHJOdxRhN6_O85P43OQlhjnDKKk160HRkPukUz1bbgrbFL5CrUfH18LroG4pFroERjeItr1YFHL3Og6ElZB_W-5Z01Go3g1WgIqOjQ9N2UqjXOorlW9ndt5l0BaGLalVt61ay68-ikUnWAiz_tR8_ju8XwIZ5M7x-Ht5NY0ZS1sQCutJAlTYqUswQILSmIRBOSAU0LUla6ohRXRcawzETGJScSeMa5EGXFgfWjq8Nu4912B6HNNyZoqGtlwe1CTgmjgslUyH30-hDdI8zXbuft_lhOcP7DNT9wzf-4sm_SQ23H</recordid><startdate>20181121</startdate><enddate>20181121</enddate><creator>Dago, A. I</creator><creator>Ryu, Y. K</creator><creator>Palomares, F. J</creator><creator>Garcia, R</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7115-1928</orcidid></search><sort><creationdate>20181121</creationdate><title>Direct Patterning of p‑Type-Doped Few-layer WSe2 Nanoelectronic Devices by Oxidation Scanning Probe Lithography</title><author>Dago, A. I ; Ryu, Y. K ; Palomares, F. J ; Garcia, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a263t-7e4ac79d25b6435e12d2e75c118e26b1dfcf220fb830987849419e484477df4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dago, A. I</creatorcontrib><creatorcontrib>Ryu, Y. K</creatorcontrib><creatorcontrib>Palomares, F. J</creatorcontrib><creatorcontrib>Garcia, R</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dago, A. I</au><au>Ryu, Y. K</au><au>Palomares, F. J</au><au>Garcia, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Patterning of p‑Type-Doped Few-layer WSe2 Nanoelectronic Devices by Oxidation Scanning Probe Lithography</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2018-11-21</date><risdate>2018</risdate><volume>10</volume><issue>46</issue><spage>40054</spage><epage>40061</epage><pages>40054-40061</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Direct, robust, and high-resolution patterning methods are needed to downscale the lateral size of two-dimensional materials to observe new properties and optimize the overall processing of these materials. In this work, we report a fabrication process where the initial microchannel of a few-layer WSe2 field-effect transistor is treated by oxygen plasma to form a self-limited oxide layer on top of the flake. This thin oxide layer has a double role here. First, it induces the so-called p-doping effect in the device. Second, it enables the fabrication of oxide nanoribbons with controlled width and depth by oxidation scanning probe lithography (o-SPL). After the removal of the oxides by deionized H2O etching, a nanoribbon-based field-effect transistor is produced. Oxidation SPL is a direct writing technique that minimizes the use of resists and lithographic steps. We have applied this process to fabricate a 5 nm thick WSe2 field-effect transistor, where the channel consists in an array of 5 parallel 350 nm half-pitch nanoribbons. The electrical measurements show that the device presents an improved conduction level compared to the starting thin-layer transistor and a positive threshold voltage shift associated to the p-doping treatment. The method enables to pattern devices with sub-50 nm feature sizes. We have patterned an array of 10 oxide nanowires with 36 nm half-pitch by oxidation SPL.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.8b15937</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7115-1928</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2018-11, Vol.10 (46), p.40054-40061 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2132739679 |
source | American Chemical Society Journals |
title | Direct Patterning of p‑Type-Doped Few-layer WSe2 Nanoelectronic Devices by Oxidation Scanning Probe Lithography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A54%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Patterning%20of%20p%E2%80%91Type-Doped%20Few-layer%20WSe2%20Nanoelectronic%20Devices%20by%20Oxidation%20Scanning%20Probe%20Lithography&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Dago,%20A.%20I&rft.date=2018-11-21&rft.volume=10&rft.issue=46&rft.spage=40054&rft.epage=40061&rft.pages=40054-40061&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.8b15937&rft_dat=%3Cproquest_acs_j%3E2132739679%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132739679&rft_id=info:pmid/&rfr_iscdi=true |