Dynamic and Electronic Polarization Corrections to the Dielectric Constant of Water

The standard approach to calculating the dielectric constant from molecular dynamics (MD) simulations employs a variant of the Kirkwood–Fröhlich methodology. Many popular nonpolarizable models of water, such as TIPnP, give a reasonable agreement with the experimental value of 78. However, it has be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2018-12, Vol.122 (48), p.9243-9250
Hauptverfasser: Farahvash, Ardavan, Leontyev, Igor, Stuchebrukhov, Alexei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9250
container_issue 48
container_start_page 9243
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 122
creator Farahvash, Ardavan
Leontyev, Igor
Stuchebrukhov, Alexei
description The standard approach to calculating the dielectric constant from molecular dynamics (MD) simulations employs a variant of the Kirkwood–Fröhlich methodology. Many popular nonpolarizable models of water, such as TIPnP, give a reasonable agreement with the experimental value of 78. However, it has been argued in the literature that the dipole moments of these models are effective, being smaller than the real dipole of a liquid water molecule by about a factor of ε el , or roughly 2 . If the total or corrected dipole moment is used in calculations, the dielectric constant comes out nearly twice as large, i.e., in the range of 160, which is twice as high as the experimental value. Here we discuss possible reasons for such a discrepancy. One approach takes into account dynamic corrections due to the dependence of the dielectric response of the medium producing the reaction field on the time scale of dipole fluctuations computed in the Kirkwood–Fröhlich method. When dynamic corrections are incorporated into the computational scheme, a much better agreement with the experimental value of the dielectric constant is found when the corrected (real) dipole moment of liquid water is used. However, a formal analysis indicates that the static properties, such as dielectric constant, should not depend on dynamics. We discuss the resulting conundrum and related issues of simulations of electrostatic interactions using periodic boundary conditions in the context of our findings.
doi_str_mv 10.1021/acs.jpca.8b07953
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2132729327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132729327</sourcerecordid><originalsourceid>FETCH-LOGICAL-a402t-8dba67e99a2956a65bbeb41f51d64c93e0d91b00174345f029f3092520eb7e8c3</originalsourceid><addsrcrecordid>eNp1kM9PwyAcxYnRuDm9ezIcPdjJz7YczTZ_JEs0UeORAKWxS1sm0MP862U_9OYFvsDnvfAeAJcYTTEi-FaZMF2tjZqWGhWC0yMwxpygjBPMj9OMSpHxnIoROAthhRDClLBTMKKIYVGwfAxe55tedY2Bqq_gorUmeten44trlW--VWxcD2fO-_SSxgCjg_HTwnljd3BCZ-k6qj5CV8MPFa0_Bye1aoO9OOwT8H6_eJs9Zsvnh6fZ3TJTDJGYlZVWeWGFUETwXOVca6sZrjmucmYEtagSWKc_F4wyXiMiaooESfmsLmxp6ARc733X3n0NNkTZNcHYtlW9dUOQJKUtiEhLQtEeNd6F4G0t177plN9IjOS2SpmqlNsq5aHKJLk6uA-6s9Wf4Le7BNzsgZ3UDb5PYf_3-wEWyX-D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132729327</pqid></control><display><type>article</type><title>Dynamic and Electronic Polarization Corrections to the Dielectric Constant of Water</title><source>American Chemical Society Journals</source><creator>Farahvash, Ardavan ; Leontyev, Igor ; Stuchebrukhov, Alexei</creator><creatorcontrib>Farahvash, Ardavan ; Leontyev, Igor ; Stuchebrukhov, Alexei</creatorcontrib><description>The standard approach to calculating the dielectric constant from molecular dynamics (MD) simulations employs a variant of the Kirkwood–Fröhlich methodology. Many popular nonpolarizable models of water, such as TIPnP, give a reasonable agreement with the experimental value of 78. However, it has been argued in the literature that the dipole moments of these models are effective, being smaller than the real dipole of a liquid water molecule by about a factor of ε el , or roughly 2 . If the total or corrected dipole moment is used in calculations, the dielectric constant comes out nearly twice as large, i.e., in the range of 160, which is twice as high as the experimental value. Here we discuss possible reasons for such a discrepancy. One approach takes into account dynamic corrections due to the dependence of the dielectric response of the medium producing the reaction field on the time scale of dipole fluctuations computed in the Kirkwood–Fröhlich method. When dynamic corrections are incorporated into the computational scheme, a much better agreement with the experimental value of the dielectric constant is found when the corrected (real) dipole moment of liquid water is used. However, a formal analysis indicates that the static properties, such as dielectric constant, should not depend on dynamics. We discuss the resulting conundrum and related issues of simulations of electrostatic interactions using periodic boundary conditions in the context of our findings.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.8b07953</identifier><identifier>PMID: 30419746</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2018-12, Vol.122 (48), p.9243-9250</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a402t-8dba67e99a2956a65bbeb41f51d64c93e0d91b00174345f029f3092520eb7e8c3</citedby><cites>FETCH-LOGICAL-a402t-8dba67e99a2956a65bbeb41f51d64c93e0d91b00174345f029f3092520eb7e8c3</cites><orcidid>0000-0001-5230-2631 ; 0000-0002-0673-1037</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpca.8b07953$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpca.8b07953$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30419746$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Farahvash, Ardavan</creatorcontrib><creatorcontrib>Leontyev, Igor</creatorcontrib><creatorcontrib>Stuchebrukhov, Alexei</creatorcontrib><title>Dynamic and Electronic Polarization Corrections to the Dielectric Constant of Water</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>The standard approach to calculating the dielectric constant from molecular dynamics (MD) simulations employs a variant of the Kirkwood–Fröhlich methodology. Many popular nonpolarizable models of water, such as TIPnP, give a reasonable agreement with the experimental value of 78. However, it has been argued in the literature that the dipole moments of these models are effective, being smaller than the real dipole of a liquid water molecule by about a factor of ε el , or roughly 2 . If the total or corrected dipole moment is used in calculations, the dielectric constant comes out nearly twice as large, i.e., in the range of 160, which is twice as high as the experimental value. Here we discuss possible reasons for such a discrepancy. One approach takes into account dynamic corrections due to the dependence of the dielectric response of the medium producing the reaction field on the time scale of dipole fluctuations computed in the Kirkwood–Fröhlich method. When dynamic corrections are incorporated into the computational scheme, a much better agreement with the experimental value of the dielectric constant is found when the corrected (real) dipole moment of liquid water is used. However, a formal analysis indicates that the static properties, such as dielectric constant, should not depend on dynamics. We discuss the resulting conundrum and related issues of simulations of electrostatic interactions using periodic boundary conditions in the context of our findings.</description><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM9PwyAcxYnRuDm9ezIcPdjJz7YczTZ_JEs0UeORAKWxS1sm0MP862U_9OYFvsDnvfAeAJcYTTEi-FaZMF2tjZqWGhWC0yMwxpygjBPMj9OMSpHxnIoROAthhRDClLBTMKKIYVGwfAxe55tedY2Bqq_gorUmeten44trlW--VWxcD2fO-_SSxgCjg_HTwnljd3BCZ-k6qj5CV8MPFa0_Bye1aoO9OOwT8H6_eJs9Zsvnh6fZ3TJTDJGYlZVWeWGFUETwXOVca6sZrjmucmYEtagSWKc_F4wyXiMiaooESfmsLmxp6ARc733X3n0NNkTZNcHYtlW9dUOQJKUtiEhLQtEeNd6F4G0t177plN9IjOS2SpmqlNsq5aHKJLk6uA-6s9Wf4Le7BNzsgZ3UDb5PYf_3-wEWyX-D</recordid><startdate>20181206</startdate><enddate>20181206</enddate><creator>Farahvash, Ardavan</creator><creator>Leontyev, Igor</creator><creator>Stuchebrukhov, Alexei</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5230-2631</orcidid><orcidid>https://orcid.org/0000-0002-0673-1037</orcidid></search><sort><creationdate>20181206</creationdate><title>Dynamic and Electronic Polarization Corrections to the Dielectric Constant of Water</title><author>Farahvash, Ardavan ; Leontyev, Igor ; Stuchebrukhov, Alexei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a402t-8dba67e99a2956a65bbeb41f51d64c93e0d91b00174345f029f3092520eb7e8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farahvash, Ardavan</creatorcontrib><creatorcontrib>Leontyev, Igor</creatorcontrib><creatorcontrib>Stuchebrukhov, Alexei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farahvash, Ardavan</au><au>Leontyev, Igor</au><au>Stuchebrukhov, Alexei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic and Electronic Polarization Corrections to the Dielectric Constant of Water</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2018-12-06</date><risdate>2018</risdate><volume>122</volume><issue>48</issue><spage>9243</spage><epage>9250</epage><pages>9243-9250</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>The standard approach to calculating the dielectric constant from molecular dynamics (MD) simulations employs a variant of the Kirkwood–Fröhlich methodology. Many popular nonpolarizable models of water, such as TIPnP, give a reasonable agreement with the experimental value of 78. However, it has been argued in the literature that the dipole moments of these models are effective, being smaller than the real dipole of a liquid water molecule by about a factor of ε el , or roughly 2 . If the total or corrected dipole moment is used in calculations, the dielectric constant comes out nearly twice as large, i.e., in the range of 160, which is twice as high as the experimental value. Here we discuss possible reasons for such a discrepancy. One approach takes into account dynamic corrections due to the dependence of the dielectric response of the medium producing the reaction field on the time scale of dipole fluctuations computed in the Kirkwood–Fröhlich method. When dynamic corrections are incorporated into the computational scheme, a much better agreement with the experimental value of the dielectric constant is found when the corrected (real) dipole moment of liquid water is used. However, a formal analysis indicates that the static properties, such as dielectric constant, should not depend on dynamics. We discuss the resulting conundrum and related issues of simulations of electrostatic interactions using periodic boundary conditions in the context of our findings.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30419746</pmid><doi>10.1021/acs.jpca.8b07953</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5230-2631</orcidid><orcidid>https://orcid.org/0000-0002-0673-1037</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2018-12, Vol.122 (48), p.9243-9250
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_2132729327
source American Chemical Society Journals
title Dynamic and Electronic Polarization Corrections to the Dielectric Constant of Water
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A10%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20and%20Electronic%20Polarization%20Corrections%20to%20the%20Dielectric%20Constant%20of%20Water&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Farahvash,%20Ardavan&rft.date=2018-12-06&rft.volume=122&rft.issue=48&rft.spage=9243&rft.epage=9250&rft.pages=9243-9250&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.8b07953&rft_dat=%3Cproquest_cross%3E2132729327%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132729327&rft_id=info:pmid/30419746&rfr_iscdi=true