Dynamic and Electronic Polarization Corrections to the Dielectric Constant of Water
The standard approach to calculating the dielectric constant from molecular dynamics (MD) simulations employs a variant of the Kirkwood–Fröhlich methodology. Many popular nonpolarizable models of water, such as TIPnP, give a reasonable agreement with the experimental value of 78. However, it has be...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2018-12, Vol.122 (48), p.9243-9250 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9250 |
---|---|
container_issue | 48 |
container_start_page | 9243 |
container_title | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
container_volume | 122 |
creator | Farahvash, Ardavan Leontyev, Igor Stuchebrukhov, Alexei |
description | The standard approach to calculating the dielectric constant from molecular dynamics (MD) simulations employs a variant of the Kirkwood–Fröhlich methodology. Many popular nonpolarizable models of water, such as TIPnP, give a reasonable agreement with the experimental value of 78. However, it has been argued in the literature that the dipole moments of these models are effective, being smaller than the real dipole of a liquid water molecule by about a factor of ε el , or roughly 2 . If the total or corrected dipole moment is used in calculations, the dielectric constant comes out nearly twice as large, i.e., in the range of 160, which is twice as high as the experimental value. Here we discuss possible reasons for such a discrepancy. One approach takes into account dynamic corrections due to the dependence of the dielectric response of the medium producing the reaction field on the time scale of dipole fluctuations computed in the Kirkwood–Fröhlich method. When dynamic corrections are incorporated into the computational scheme, a much better agreement with the experimental value of the dielectric constant is found when the corrected (real) dipole moment of liquid water is used. However, a formal analysis indicates that the static properties, such as dielectric constant, should not depend on dynamics. We discuss the resulting conundrum and related issues of simulations of electrostatic interactions using periodic boundary conditions in the context of our findings. |
doi_str_mv | 10.1021/acs.jpca.8b07953 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2132729327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132729327</sourcerecordid><originalsourceid>FETCH-LOGICAL-a402t-8dba67e99a2956a65bbeb41f51d64c93e0d91b00174345f029f3092520eb7e8c3</originalsourceid><addsrcrecordid>eNp1kM9PwyAcxYnRuDm9ezIcPdjJz7YczTZ_JEs0UeORAKWxS1sm0MP862U_9OYFvsDnvfAeAJcYTTEi-FaZMF2tjZqWGhWC0yMwxpygjBPMj9OMSpHxnIoROAthhRDClLBTMKKIYVGwfAxe55tedY2Bqq_gorUmeten44trlW--VWxcD2fO-_SSxgCjg_HTwnljd3BCZ-k6qj5CV8MPFa0_Bye1aoO9OOwT8H6_eJs9Zsvnh6fZ3TJTDJGYlZVWeWGFUETwXOVca6sZrjmucmYEtagSWKc_F4wyXiMiaooESfmsLmxp6ARc733X3n0NNkTZNcHYtlW9dUOQJKUtiEhLQtEeNd6F4G0t177plN9IjOS2SpmqlNsq5aHKJLk6uA-6s9Wf4Le7BNzsgZ3UDb5PYf_3-wEWyX-D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132729327</pqid></control><display><type>article</type><title>Dynamic and Electronic Polarization Corrections to the Dielectric Constant of Water</title><source>American Chemical Society Journals</source><creator>Farahvash, Ardavan ; Leontyev, Igor ; Stuchebrukhov, Alexei</creator><creatorcontrib>Farahvash, Ardavan ; Leontyev, Igor ; Stuchebrukhov, Alexei</creatorcontrib><description>The standard approach to calculating the dielectric constant from molecular dynamics (MD) simulations employs a variant of the Kirkwood–Fröhlich methodology. Many popular nonpolarizable models of water, such as TIPnP, give a reasonable agreement with the experimental value of 78. However, it has been argued in the literature that the dipole moments of these models are effective, being smaller than the real dipole of a liquid water molecule by about a factor of ε el , or roughly 2 . If the total or corrected dipole moment is used in calculations, the dielectric constant comes out nearly twice as large, i.e., in the range of 160, which is twice as high as the experimental value. Here we discuss possible reasons for such a discrepancy. One approach takes into account dynamic corrections due to the dependence of the dielectric response of the medium producing the reaction field on the time scale of dipole fluctuations computed in the Kirkwood–Fröhlich method. When dynamic corrections are incorporated into the computational scheme, a much better agreement with the experimental value of the dielectric constant is found when the corrected (real) dipole moment of liquid water is used. However, a formal analysis indicates that the static properties, such as dielectric constant, should not depend on dynamics. We discuss the resulting conundrum and related issues of simulations of electrostatic interactions using periodic boundary conditions in the context of our findings.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.8b07953</identifier><identifier>PMID: 30419746</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2018-12, Vol.122 (48), p.9243-9250</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a402t-8dba67e99a2956a65bbeb41f51d64c93e0d91b00174345f029f3092520eb7e8c3</citedby><cites>FETCH-LOGICAL-a402t-8dba67e99a2956a65bbeb41f51d64c93e0d91b00174345f029f3092520eb7e8c3</cites><orcidid>0000-0001-5230-2631 ; 0000-0002-0673-1037</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpca.8b07953$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpca.8b07953$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30419746$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Farahvash, Ardavan</creatorcontrib><creatorcontrib>Leontyev, Igor</creatorcontrib><creatorcontrib>Stuchebrukhov, Alexei</creatorcontrib><title>Dynamic and Electronic Polarization Corrections to the Dielectric Constant of Water</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>The standard approach to calculating the dielectric constant from molecular dynamics (MD) simulations employs a variant of the Kirkwood–Fröhlich methodology. Many popular nonpolarizable models of water, such as TIPnP, give a reasonable agreement with the experimental value of 78. However, it has been argued in the literature that the dipole moments of these models are effective, being smaller than the real dipole of a liquid water molecule by about a factor of ε el , or roughly 2 . If the total or corrected dipole moment is used in calculations, the dielectric constant comes out nearly twice as large, i.e., in the range of 160, which is twice as high as the experimental value. Here we discuss possible reasons for such a discrepancy. One approach takes into account dynamic corrections due to the dependence of the dielectric response of the medium producing the reaction field on the time scale of dipole fluctuations computed in the Kirkwood–Fröhlich method. When dynamic corrections are incorporated into the computational scheme, a much better agreement with the experimental value of the dielectric constant is found when the corrected (real) dipole moment of liquid water is used. However, a formal analysis indicates that the static properties, such as dielectric constant, should not depend on dynamics. We discuss the resulting conundrum and related issues of simulations of electrostatic interactions using periodic boundary conditions in the context of our findings.</description><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM9PwyAcxYnRuDm9ezIcPdjJz7YczTZ_JEs0UeORAKWxS1sm0MP862U_9OYFvsDnvfAeAJcYTTEi-FaZMF2tjZqWGhWC0yMwxpygjBPMj9OMSpHxnIoROAthhRDClLBTMKKIYVGwfAxe55tedY2Bqq_gorUmeten44trlW--VWxcD2fO-_SSxgCjg_HTwnljd3BCZ-k6qj5CV8MPFa0_Bye1aoO9OOwT8H6_eJs9Zsvnh6fZ3TJTDJGYlZVWeWGFUETwXOVca6sZrjmucmYEtagSWKc_F4wyXiMiaooESfmsLmxp6ARc733X3n0NNkTZNcHYtlW9dUOQJKUtiEhLQtEeNd6F4G0t177plN9IjOS2SpmqlNsq5aHKJLk6uA-6s9Wf4Le7BNzsgZ3UDb5PYf_3-wEWyX-D</recordid><startdate>20181206</startdate><enddate>20181206</enddate><creator>Farahvash, Ardavan</creator><creator>Leontyev, Igor</creator><creator>Stuchebrukhov, Alexei</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5230-2631</orcidid><orcidid>https://orcid.org/0000-0002-0673-1037</orcidid></search><sort><creationdate>20181206</creationdate><title>Dynamic and Electronic Polarization Corrections to the Dielectric Constant of Water</title><author>Farahvash, Ardavan ; Leontyev, Igor ; Stuchebrukhov, Alexei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a402t-8dba67e99a2956a65bbeb41f51d64c93e0d91b00174345f029f3092520eb7e8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farahvash, Ardavan</creatorcontrib><creatorcontrib>Leontyev, Igor</creatorcontrib><creatorcontrib>Stuchebrukhov, Alexei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farahvash, Ardavan</au><au>Leontyev, Igor</au><au>Stuchebrukhov, Alexei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic and Electronic Polarization Corrections to the Dielectric Constant of Water</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2018-12-06</date><risdate>2018</risdate><volume>122</volume><issue>48</issue><spage>9243</spage><epage>9250</epage><pages>9243-9250</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>The standard approach to calculating the dielectric constant from molecular dynamics (MD) simulations employs a variant of the Kirkwood–Fröhlich methodology. Many popular nonpolarizable models of water, such as TIPnP, give a reasonable agreement with the experimental value of 78. However, it has been argued in the literature that the dipole moments of these models are effective, being smaller than the real dipole of a liquid water molecule by about a factor of ε el , or roughly 2 . If the total or corrected dipole moment is used in calculations, the dielectric constant comes out nearly twice as large, i.e., in the range of 160, which is twice as high as the experimental value. Here we discuss possible reasons for such a discrepancy. One approach takes into account dynamic corrections due to the dependence of the dielectric response of the medium producing the reaction field on the time scale of dipole fluctuations computed in the Kirkwood–Fröhlich method. When dynamic corrections are incorporated into the computational scheme, a much better agreement with the experimental value of the dielectric constant is found when the corrected (real) dipole moment of liquid water is used. However, a formal analysis indicates that the static properties, such as dielectric constant, should not depend on dynamics. We discuss the resulting conundrum and related issues of simulations of electrostatic interactions using periodic boundary conditions in the context of our findings.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30419746</pmid><doi>10.1021/acs.jpca.8b07953</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5230-2631</orcidid><orcidid>https://orcid.org/0000-0002-0673-1037</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-5639 |
ispartof | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2018-12, Vol.122 (48), p.9243-9250 |
issn | 1089-5639 1520-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_2132729327 |
source | American Chemical Society Journals |
title | Dynamic and Electronic Polarization Corrections to the Dielectric Constant of Water |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A10%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20and%20Electronic%20Polarization%20Corrections%20to%20the%20Dielectric%20Constant%20of%20Water&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Farahvash,%20Ardavan&rft.date=2018-12-06&rft.volume=122&rft.issue=48&rft.spage=9243&rft.epage=9250&rft.pages=9243-9250&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.8b07953&rft_dat=%3Cproquest_cross%3E2132729327%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132729327&rft_id=info:pmid/30419746&rfr_iscdi=true |