Energy transfer dynamics in a red-shifted violaxanthin-chlorophyll a light-harvesting complex
Photosynthetic eukaryotes whose cells harbor plastids originating from secondary endosymbiosis of a red alga include species of major ecological and economic importance. Since utilization of solar energy relies on the efficient light-harvesting, one of the critical factors for the success of the red...
Gespeichert in:
Veröffentlicht in: | Biochimica et biophysica acta. Bioenergetics 2019-02, Vol.1860 (2), p.111-120 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 120 |
---|---|
container_issue | 2 |
container_start_page | 111 |
container_title | Biochimica et biophysica acta. Bioenergetics |
container_volume | 1860 |
creator | Bína, David Durchan, Milan Kuznetsova, Valentyna Vácha, František Litvín, Radek Polívka, Tomáš |
description | Photosynthetic eukaryotes whose cells harbor plastids originating from secondary endosymbiosis of a red alga include species of major ecological and economic importance. Since utilization of solar energy relies on the efficient light-harvesting, one of the critical factors for the success of the red lineage in a range of environments is to be found in the adaptability of the light-harvesting machinery, formed by the proteins of the light-harvesting complex (LHC) family. A number of species are known to employ mainly a unique class of LHC containing red-shifted chlorophyll a (Chl a) forms absorbing above 690 nm. This appears to be an adaptation to shaded habitats. Here we present a detailed investigation of excitation energy flow in the red-shifted light-harvesting antenna of eustigmatophyte Trachydiscus minutus using time-resolved fluorescence and ultrafast transient absorption measurements. The main carotenoid in the complex is violaxanthin, hence this LHC is labeled the red-violaxanthin-Chl a protein, rVCP. Both the carotenoid-to-Chl a energy transfer and excitation dynamics within the Chl a manifold were studied and compared to the related antenna complex, VCP, that lacks the red-Chl a. Two spectrally defined carotenoid pools were identified in the red antenna, contributing to energy transfer to Chl a, mostly via S2 and hot S1 states. Also, Chl a triplet quenching by carotenoids is documented. Two separate pools of red-shifted Chl a were resolved, one is likely formed by excitonically coupled Chl a molecules. The structural implications of these observations are discussed.
•Algal antenna with absorption >700 nm, binds Chl a, violaxanthin, vaucheriaxanthin.•Two pools of carotenoids, both transfer energy efficiently to red chlorophylls.•There are two pools of red Chl a, only one accepts excitation from carotenoids.•The lowest-energy Chl a states are formed by excitonically coupled pigments. |
doi_str_mv | 10.1016/j.bbabio.2018.11.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2132267383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005272818302494</els_id><sourcerecordid>2132267383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-739359e7497d8159f9a67736d3889113797dded7a98932bda4409a185a9d26523</originalsourceid><addsrcrecordid>eNp9kEtP3DAURq2qqAy0_6BCWbJJ8COJ7U2lClFAQmIDy8py7JuJR4492JkR8-9rNMCyqytdne8-DkI_CW4IJv3VphkGPbjYUExEQ0iDcf8FrYjgsqZ9h7-iFca4qymn4hSd5bzBJdZS9g2dMtySVlK5Qn9vAqT1oVqSDnmEVNlD0LMzuXKh0lUCW-fJjQvYau-i1686LJMLtZl8THE7HbwvmHfraaknnfaQFxfWlYnz1sPrd3Qyap_hx3s9R89_bp6u7-qHx9v7698PtWmpWGrOJOsk8FZyK0gnR6l7zllvmRCSEMZL34LlWgrJ6GB122Kpiei0tOVVys7R5XHuNsWXXblBzS4b8F4HiLusKGGU9pwJVtD2iJoUc04wqm1ys04HRbB6E6s26ihWvYlVhKgitsQu3jfshhnsZ-jDZAF-HQEof-4dJJWNg2DAugRmUTa6_2_4B-kOizE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132267383</pqid></control><display><type>article</type><title>Energy transfer dynamics in a red-shifted violaxanthin-chlorophyll a light-harvesting complex</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bína, David ; Durchan, Milan ; Kuznetsova, Valentyna ; Vácha, František ; Litvín, Radek ; Polívka, Tomáš</creator><creatorcontrib>Bína, David ; Durchan, Milan ; Kuznetsova, Valentyna ; Vácha, František ; Litvín, Radek ; Polívka, Tomáš</creatorcontrib><description>Photosynthetic eukaryotes whose cells harbor plastids originating from secondary endosymbiosis of a red alga include species of major ecological and economic importance. Since utilization of solar energy relies on the efficient light-harvesting, one of the critical factors for the success of the red lineage in a range of environments is to be found in the adaptability of the light-harvesting machinery, formed by the proteins of the light-harvesting complex (LHC) family. A number of species are known to employ mainly a unique class of LHC containing red-shifted chlorophyll a (Chl a) forms absorbing above 690 nm. This appears to be an adaptation to shaded habitats. Here we present a detailed investigation of excitation energy flow in the red-shifted light-harvesting antenna of eustigmatophyte Trachydiscus minutus using time-resolved fluorescence and ultrafast transient absorption measurements. The main carotenoid in the complex is violaxanthin, hence this LHC is labeled the red-violaxanthin-Chl a protein, rVCP. Both the carotenoid-to-Chl a energy transfer and excitation dynamics within the Chl a manifold were studied and compared to the related antenna complex, VCP, that lacks the red-Chl a. Two spectrally defined carotenoid pools were identified in the red antenna, contributing to energy transfer to Chl a, mostly via S2 and hot S1 states. Also, Chl a triplet quenching by carotenoids is documented. Two separate pools of red-shifted Chl a were resolved, one is likely formed by excitonically coupled Chl a molecules. The structural implications of these observations are discussed.
•Algal antenna with absorption >700 nm, binds Chl a, violaxanthin, vaucheriaxanthin.•Two pools of carotenoids, both transfer energy efficiently to red chlorophylls.•There are two pools of red Chl a, only one accepts excitation from carotenoids.•The lowest-energy Chl a states are formed by excitonically coupled pigments.</description><identifier>ISSN: 0005-2728</identifier><identifier>EISSN: 1879-2650</identifier><identifier>DOI: 10.1016/j.bbabio.2018.11.006</identifier><identifier>PMID: 30414929</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Chlorophyll A ; Chlorophyta - physiology ; Energy Transfer - physiology ; Light-Harvesting Protein Complexes - chemistry ; Plastids ; Rhodophyta - physiology ; Spectrometry, Fluorescence - methods ; Stramenopiles - physiology ; Xanthophylls</subject><ispartof>Biochimica et biophysica acta. Bioenergetics, 2019-02, Vol.1860 (2), p.111-120</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright © 2018 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-739359e7497d8159f9a67736d3889113797dded7a98932bda4409a185a9d26523</citedby><cites>FETCH-LOGICAL-c428t-739359e7497d8159f9a67736d3889113797dded7a98932bda4409a185a9d26523</cites><orcidid>0000-0002-6176-0420</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bbabio.2018.11.006$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30414929$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bína, David</creatorcontrib><creatorcontrib>Durchan, Milan</creatorcontrib><creatorcontrib>Kuznetsova, Valentyna</creatorcontrib><creatorcontrib>Vácha, František</creatorcontrib><creatorcontrib>Litvín, Radek</creatorcontrib><creatorcontrib>Polívka, Tomáš</creatorcontrib><title>Energy transfer dynamics in a red-shifted violaxanthin-chlorophyll a light-harvesting complex</title><title>Biochimica et biophysica acta. Bioenergetics</title><addtitle>Biochim Biophys Acta Bioenerg</addtitle><description>Photosynthetic eukaryotes whose cells harbor plastids originating from secondary endosymbiosis of a red alga include species of major ecological and economic importance. Since utilization of solar energy relies on the efficient light-harvesting, one of the critical factors for the success of the red lineage in a range of environments is to be found in the adaptability of the light-harvesting machinery, formed by the proteins of the light-harvesting complex (LHC) family. A number of species are known to employ mainly a unique class of LHC containing red-shifted chlorophyll a (Chl a) forms absorbing above 690 nm. This appears to be an adaptation to shaded habitats. Here we present a detailed investigation of excitation energy flow in the red-shifted light-harvesting antenna of eustigmatophyte Trachydiscus minutus using time-resolved fluorescence and ultrafast transient absorption measurements. The main carotenoid in the complex is violaxanthin, hence this LHC is labeled the red-violaxanthin-Chl a protein, rVCP. Both the carotenoid-to-Chl a energy transfer and excitation dynamics within the Chl a manifold were studied and compared to the related antenna complex, VCP, that lacks the red-Chl a. Two spectrally defined carotenoid pools were identified in the red antenna, contributing to energy transfer to Chl a, mostly via S2 and hot S1 states. Also, Chl a triplet quenching by carotenoids is documented. Two separate pools of red-shifted Chl a were resolved, one is likely formed by excitonically coupled Chl a molecules. The structural implications of these observations are discussed.
•Algal antenna with absorption >700 nm, binds Chl a, violaxanthin, vaucheriaxanthin.•Two pools of carotenoids, both transfer energy efficiently to red chlorophylls.•There are two pools of red Chl a, only one accepts excitation from carotenoids.•The lowest-energy Chl a states are formed by excitonically coupled pigments.</description><subject>Chlorophyll A</subject><subject>Chlorophyta - physiology</subject><subject>Energy Transfer - physiology</subject><subject>Light-Harvesting Protein Complexes - chemistry</subject><subject>Plastids</subject><subject>Rhodophyta - physiology</subject><subject>Spectrometry, Fluorescence - methods</subject><subject>Stramenopiles - physiology</subject><subject>Xanthophylls</subject><issn>0005-2728</issn><issn>1879-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtP3DAURq2qqAy0_6BCWbJJ8COJ7U2lClFAQmIDy8py7JuJR4492JkR8-9rNMCyqytdne8-DkI_CW4IJv3VphkGPbjYUExEQ0iDcf8FrYjgsqZ9h7-iFca4qymn4hSd5bzBJdZS9g2dMtySVlK5Qn9vAqT1oVqSDnmEVNlD0LMzuXKh0lUCW-fJjQvYau-i1686LJMLtZl8THE7HbwvmHfraaknnfaQFxfWlYnz1sPrd3Qyap_hx3s9R89_bp6u7-qHx9v7698PtWmpWGrOJOsk8FZyK0gnR6l7zllvmRCSEMZL34LlWgrJ6GB122Kpiei0tOVVys7R5XHuNsWXXblBzS4b8F4HiLusKGGU9pwJVtD2iJoUc04wqm1ys04HRbB6E6s26ihWvYlVhKgitsQu3jfshhnsZ-jDZAF-HQEof-4dJJWNg2DAugRmUTa6_2_4B-kOizE</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Bína, David</creator><creator>Durchan, Milan</creator><creator>Kuznetsova, Valentyna</creator><creator>Vácha, František</creator><creator>Litvín, Radek</creator><creator>Polívka, Tomáš</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6176-0420</orcidid></search><sort><creationdate>20190201</creationdate><title>Energy transfer dynamics in a red-shifted violaxanthin-chlorophyll a light-harvesting complex</title><author>Bína, David ; Durchan, Milan ; Kuznetsova, Valentyna ; Vácha, František ; Litvín, Radek ; Polívka, Tomáš</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-739359e7497d8159f9a67736d3889113797dded7a98932bda4409a185a9d26523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chlorophyll A</topic><topic>Chlorophyta - physiology</topic><topic>Energy Transfer - physiology</topic><topic>Light-Harvesting Protein Complexes - chemistry</topic><topic>Plastids</topic><topic>Rhodophyta - physiology</topic><topic>Spectrometry, Fluorescence - methods</topic><topic>Stramenopiles - physiology</topic><topic>Xanthophylls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bína, David</creatorcontrib><creatorcontrib>Durchan, Milan</creatorcontrib><creatorcontrib>Kuznetsova, Valentyna</creatorcontrib><creatorcontrib>Vácha, František</creatorcontrib><creatorcontrib>Litvín, Radek</creatorcontrib><creatorcontrib>Polívka, Tomáš</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochimica et biophysica acta. Bioenergetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bína, David</au><au>Durchan, Milan</au><au>Kuznetsova, Valentyna</au><au>Vácha, František</au><au>Litvín, Radek</au><au>Polívka, Tomáš</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy transfer dynamics in a red-shifted violaxanthin-chlorophyll a light-harvesting complex</atitle><jtitle>Biochimica et biophysica acta. Bioenergetics</jtitle><addtitle>Biochim Biophys Acta Bioenerg</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>1860</volume><issue>2</issue><spage>111</spage><epage>120</epage><pages>111-120</pages><issn>0005-2728</issn><eissn>1879-2650</eissn><abstract>Photosynthetic eukaryotes whose cells harbor plastids originating from secondary endosymbiosis of a red alga include species of major ecological and economic importance. Since utilization of solar energy relies on the efficient light-harvesting, one of the critical factors for the success of the red lineage in a range of environments is to be found in the adaptability of the light-harvesting machinery, formed by the proteins of the light-harvesting complex (LHC) family. A number of species are known to employ mainly a unique class of LHC containing red-shifted chlorophyll a (Chl a) forms absorbing above 690 nm. This appears to be an adaptation to shaded habitats. Here we present a detailed investigation of excitation energy flow in the red-shifted light-harvesting antenna of eustigmatophyte Trachydiscus minutus using time-resolved fluorescence and ultrafast transient absorption measurements. The main carotenoid in the complex is violaxanthin, hence this LHC is labeled the red-violaxanthin-Chl a protein, rVCP. Both the carotenoid-to-Chl a energy transfer and excitation dynamics within the Chl a manifold were studied and compared to the related antenna complex, VCP, that lacks the red-Chl a. Two spectrally defined carotenoid pools were identified in the red antenna, contributing to energy transfer to Chl a, mostly via S2 and hot S1 states. Also, Chl a triplet quenching by carotenoids is documented. Two separate pools of red-shifted Chl a were resolved, one is likely formed by excitonically coupled Chl a molecules. The structural implications of these observations are discussed.
•Algal antenna with absorption >700 nm, binds Chl a, violaxanthin, vaucheriaxanthin.•Two pools of carotenoids, both transfer energy efficiently to red chlorophylls.•There are two pools of red Chl a, only one accepts excitation from carotenoids.•The lowest-energy Chl a states are formed by excitonically coupled pigments.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>30414929</pmid><doi>10.1016/j.bbabio.2018.11.006</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6176-0420</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0005-2728 |
ispartof | Biochimica et biophysica acta. Bioenergetics, 2019-02, Vol.1860 (2), p.111-120 |
issn | 0005-2728 1879-2650 |
language | eng |
recordid | cdi_proquest_miscellaneous_2132267383 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals |
subjects | Chlorophyll A Chlorophyta - physiology Energy Transfer - physiology Light-Harvesting Protein Complexes - chemistry Plastids Rhodophyta - physiology Spectrometry, Fluorescence - methods Stramenopiles - physiology Xanthophylls |
title | Energy transfer dynamics in a red-shifted violaxanthin-chlorophyll a light-harvesting complex |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T14%3A30%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20transfer%20dynamics%20in%20a%20red-shifted%20violaxanthin-chlorophyll%20a%20light-harvesting%20complex&rft.jtitle=Biochimica%20et%20biophysica%20acta.%20Bioenergetics&rft.au=B%C3%ADna,%20David&rft.date=2019-02-01&rft.volume=1860&rft.issue=2&rft.spage=111&rft.epage=120&rft.pages=111-120&rft.issn=0005-2728&rft.eissn=1879-2650&rft_id=info:doi/10.1016/j.bbabio.2018.11.006&rft_dat=%3Cproquest_cross%3E2132267383%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132267383&rft_id=info:pmid/30414929&rft_els_id=S0005272818302494&rfr_iscdi=true |