MicroRNA-323a-3p Promotes Pressure Overload-Induced Cardiac Fibrosis by Targeting TIMP3

Background/Aims: Cardiac fibrosis is a major cause of diverse cardiovascular diseases. MicroRNAs have recently been proven a novel class of regulators of cardiac fibrosis. In this study, we sought to investigate the role of miR-323a-3p and its mechanisms in regulating cardiac fibrosis. Methods: The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular physiology and biochemistry 2018-01, Vol.50 (6), p.2176-2187
Hauptverfasser: Zhang, JingChao , Lang, Yan, Guo, LongHui, Pei, Yu, Hao, Shuang, Liang, ZhenXing, Su, Gang, Shu, LiLiang, Liu, Hai, Huang, Chen, Xu, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2187
container_issue 6
container_start_page 2176
container_title Cellular physiology and biochemistry
container_volume 50
creator Zhang, JingChao 
Lang, Yan
Guo, LongHui
Pei, Yu
Hao, Shuang
Liang, ZhenXing
Su, Gang
Shu, LiLiang
Liu, Hai
Huang, Chen
Xu, Jing
description Background/Aims: Cardiac fibrosis is a major cause of diverse cardiovascular diseases. MicroRNAs have recently been proven a novel class of regulators of cardiac fibrosis. In this study, we sought to investigate the role of miR-323a-3p and its mechanisms in regulating cardiac fibrosis. Methods: The transverse aortic constriction (TAC) mice model was induced and neonatal cardiac fibroblasts (CFs) were cultured. MTT (3- [4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide) assay was used to detect the cell viability. Echocardiography was used to evaluate cardiac function. Masson’s Trichrome stain was used to evaluate the development of fibrosis. Luciferase activity assay was performed to confirm the miRNA’s binding site. Real-time PCR and Western blot were used to evaluate the level of mRNA and protein. Results: MiR-323a-3p was found up-regulated in myocardial tissues subjected to TAC and in CFs cultured with Angiotensin Ⅱ (Ang Ⅱ). Overexpression of miR-323a-3p significantly increased the mRNA levels of collagen Ⅰ, collagen Ⅲ, MMP2 and MMP9, while inhibition of miR-323a-3p prevented the proliferation, collagen production and the protein level of transforming growth factor (TGF-β) in rat neonatal CFs. Strikingly, injection of antagomiR-323a-3p elevated cardiac function and inhibited the expression of TGF-β in the TAC mice. TIMP3 was a direct target of miR-323a-3p, as the overexpression of miR-323a-3p decreased the protein and mRNA levels of TIMP3. In the CFs with pre-treatment of Ang Ⅱ, siRNA-TIMP abolished the effects of AMO-323a-3p on the inhibition of the proliferation of CFs, the down-regulation of collagen Ⅰ and collagen Ⅲ, and the expression of TGF-β. Conclusion: Our findings provide evidence that miR-323a-3p promotes cardiac fibrosis via miR-323a-3p-TIMP3-TGF-β pathway. miR-323a-3p may be a new marker for cardiac fibrosis progression and that inhibition of miR-323a-3p may be a promising therapeutic target for the treatment of cardiac fibrosis.
doi_str_mv 10.1159/000495059
format Article
fullrecord <record><control><sourceid>proquest_karge</sourceid><recordid>TN_cdi_proquest_miscellaneous_2132258890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c432742037be46909c948b74851af238</doaj_id><sourcerecordid>2301907816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-973b46dc16a840f9f695a8f7a907c562328bf49f445f5c3876dd387ed1f8daa33</originalsourceid><addsrcrecordid>eNptkUtP3DAUhS1EVR7tovsKRWJDFyl-xvaSjqAdiccIDWJpOX6MPGTGUztB4t_XNDQL1I19bX_36PgeAL4g-B0hJs8hhFQyyOQeOEQUo1pyLvZLDRGrhRT8ABzlvIblyCX-CA4IpIhhhg7B400wKd7fXtQEE12TXbVIcRN7l0vhch6Sq-6eXeqitvV8awfjbDXTyQZtqqvQpphDrtqXaqnTyvVhu6qW85sF-QQ-eN1l9_ltPwYPV5fL2a_6-u7nfHZxXRvakL4YJS1trEGNFhR66RvJtPBcS8gNazDBovVUekqZZ4YI3lhbVmeRF1ZrQo7BfNS1Ua_VLoWNTi8q6qD-XsS0Ujr1wXROGUowpxgS3jraSCiNpKLlVDCkPSaiaJ2NWrsUfw8u92oTsnFdp7cuDllhRDBmQkhY0NN36DoOaVt-qjCBqLgXqCnUt5EqI845OT8ZRFC9Jqem5Ap78qY4tBtnJ_JfVAX4OgJPr5NOEzD1n_73ebb4MRJqZz35A8Ito2c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2301907816</pqid></control><display><type>article</type><title>MicroRNA-323a-3p Promotes Pressure Overload-Induced Cardiac Fibrosis by Targeting TIMP3</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Karger Open Access</source><creator>Zhang, JingChao  ; Lang, Yan ; Guo, LongHui ; Pei, Yu ; Hao, Shuang ; Liang, ZhenXing ; Su, Gang ; Shu, LiLiang ; Liu, Hai ; Huang, Chen ; Xu, Jing</creator><creatorcontrib>Zhang, JingChao  ; Lang, Yan ; Guo, LongHui ; Pei, Yu ; Hao, Shuang ; Liang, ZhenXing ; Su, Gang ; Shu, LiLiang ; Liu, Hai ; Huang, Chen ; Xu, Jing</creatorcontrib><description>Background/Aims: Cardiac fibrosis is a major cause of diverse cardiovascular diseases. MicroRNAs have recently been proven a novel class of regulators of cardiac fibrosis. In this study, we sought to investigate the role of miR-323a-3p and its mechanisms in regulating cardiac fibrosis. Methods: The transverse aortic constriction (TAC) mice model was induced and neonatal cardiac fibroblasts (CFs) were cultured. MTT (3- [4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide) assay was used to detect the cell viability. Echocardiography was used to evaluate cardiac function. Masson’s Trichrome stain was used to evaluate the development of fibrosis. Luciferase activity assay was performed to confirm the miRNA’s binding site. Real-time PCR and Western blot were used to evaluate the level of mRNA and protein. Results: MiR-323a-3p was found up-regulated in myocardial tissues subjected to TAC and in CFs cultured with Angiotensin Ⅱ (Ang Ⅱ). Overexpression of miR-323a-3p significantly increased the mRNA levels of collagen Ⅰ, collagen Ⅲ, MMP2 and MMP9, while inhibition of miR-323a-3p prevented the proliferation, collagen production and the protein level of transforming growth factor (TGF-β) in rat neonatal CFs. Strikingly, injection of antagomiR-323a-3p elevated cardiac function and inhibited the expression of TGF-β in the TAC mice. TIMP3 was a direct target of miR-323a-3p, as the overexpression of miR-323a-3p decreased the protein and mRNA levels of TIMP3. In the CFs with pre-treatment of Ang Ⅱ, siRNA-TIMP abolished the effects of AMO-323a-3p on the inhibition of the proliferation of CFs, the down-regulation of collagen Ⅰ and collagen Ⅲ, and the expression of TGF-β. Conclusion: Our findings provide evidence that miR-323a-3p promotes cardiac fibrosis via miR-323a-3p-TIMP3-TGF-β pathway. miR-323a-3p may be a new marker for cardiac fibrosis progression and that inhibition of miR-323a-3p may be a promising therapeutic target for the treatment of cardiac fibrosis.</description><identifier>ISSN: 1015-8987</identifier><identifier>EISSN: 1421-9778</identifier><identifier>DOI: 10.1159/000495059</identifier><identifier>PMID: 30415251</identifier><language>eng</language><publisher>Basel, Switzerland: S. Karger AG</publisher><subject>3' Untranslated Regions ; Acute coronary syndromes ; Angiotensin II - pharmacology ; Animals ; Antagomirs - metabolism ; Ataxia ; Biochemistry ; Cardiac fibrosis ; Cardiac function ; Cardiology ; Cardiomyopathy ; Cells, Cultured ; Collagen Type I - genetics ; Collagen Type I - metabolism ; Coronary vessels ; Extracellular matrix ; Fibroblasts ; Fibroblasts - cytology ; Fibroblasts - drug effects ; Fibroblasts - metabolism ; Fibrosis ; Gene expression ; Heart attacks ; Heart failure ; Male ; Matrix Metalloproteinase 2 - genetics ; Matrix Metalloproteinase 2 - metabolism ; Mice ; Mice, Inbred C57BL ; MicroRNAs ; MicroRNAs - antagonists &amp; inhibitors ; MicroRNAs - genetics ; MicroRNAs - metabolism ; miR-323-3p ; Myocardium - metabolism ; Myocardium - pathology ; Original Paper ; Physiology ; Rats ; Rats, Sprague-Dawley ; RNA Interference ; RNA, Small Interfering - metabolism ; TAC ; TGFβ ; TIMP3 ; Tissue Inhibitor of Metalloproteinase-3 - antagonists &amp; inhibitors ; Tissue Inhibitor of Metalloproteinase-3 - genetics ; Tissue Inhibitor of Metalloproteinase-3 - metabolism ; Transforming Growth Factor beta1 - metabolism</subject><ispartof>Cellular physiology and biochemistry, 2018-01, Vol.50 (6), p.2176-2187</ispartof><rights>2018 The Author(s). Published by S. Karger AG, Basel</rights><rights>2018 The Author(s). Published by S. Karger AG, Basel.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-973b46dc16a840f9f695a8f7a907c562328bf49f445f5c3876dd387ed1f8daa33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2095,27614,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30415251$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, JingChao </creatorcontrib><creatorcontrib>Lang, Yan</creatorcontrib><creatorcontrib>Guo, LongHui</creatorcontrib><creatorcontrib>Pei, Yu</creatorcontrib><creatorcontrib>Hao, Shuang</creatorcontrib><creatorcontrib>Liang, ZhenXing</creatorcontrib><creatorcontrib>Su, Gang</creatorcontrib><creatorcontrib>Shu, LiLiang</creatorcontrib><creatorcontrib>Liu, Hai</creatorcontrib><creatorcontrib>Huang, Chen</creatorcontrib><creatorcontrib>Xu, Jing</creatorcontrib><title>MicroRNA-323a-3p Promotes Pressure Overload-Induced Cardiac Fibrosis by Targeting TIMP3</title><title>Cellular physiology and biochemistry</title><addtitle>Cell Physiol Biochem</addtitle><description>Background/Aims: Cardiac fibrosis is a major cause of diverse cardiovascular diseases. MicroRNAs have recently been proven a novel class of regulators of cardiac fibrosis. In this study, we sought to investigate the role of miR-323a-3p and its mechanisms in regulating cardiac fibrosis. Methods: The transverse aortic constriction (TAC) mice model was induced and neonatal cardiac fibroblasts (CFs) were cultured. MTT (3- [4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide) assay was used to detect the cell viability. Echocardiography was used to evaluate cardiac function. Masson’s Trichrome stain was used to evaluate the development of fibrosis. Luciferase activity assay was performed to confirm the miRNA’s binding site. Real-time PCR and Western blot were used to evaluate the level of mRNA and protein. Results: MiR-323a-3p was found up-regulated in myocardial tissues subjected to TAC and in CFs cultured with Angiotensin Ⅱ (Ang Ⅱ). Overexpression of miR-323a-3p significantly increased the mRNA levels of collagen Ⅰ, collagen Ⅲ, MMP2 and MMP9, while inhibition of miR-323a-3p prevented the proliferation, collagen production and the protein level of transforming growth factor (TGF-β) in rat neonatal CFs. Strikingly, injection of antagomiR-323a-3p elevated cardiac function and inhibited the expression of TGF-β in the TAC mice. TIMP3 was a direct target of miR-323a-3p, as the overexpression of miR-323a-3p decreased the protein and mRNA levels of TIMP3. In the CFs with pre-treatment of Ang Ⅱ, siRNA-TIMP abolished the effects of AMO-323a-3p on the inhibition of the proliferation of CFs, the down-regulation of collagen Ⅰ and collagen Ⅲ, and the expression of TGF-β. Conclusion: Our findings provide evidence that miR-323a-3p promotes cardiac fibrosis via miR-323a-3p-TIMP3-TGF-β pathway. miR-323a-3p may be a new marker for cardiac fibrosis progression and that inhibition of miR-323a-3p may be a promising therapeutic target for the treatment of cardiac fibrosis.</description><subject>3' Untranslated Regions</subject><subject>Acute coronary syndromes</subject><subject>Angiotensin II - pharmacology</subject><subject>Animals</subject><subject>Antagomirs - metabolism</subject><subject>Ataxia</subject><subject>Biochemistry</subject><subject>Cardiac fibrosis</subject><subject>Cardiac function</subject><subject>Cardiology</subject><subject>Cardiomyopathy</subject><subject>Cells, Cultured</subject><subject>Collagen Type I - genetics</subject><subject>Collagen Type I - metabolism</subject><subject>Coronary vessels</subject><subject>Extracellular matrix</subject><subject>Fibroblasts</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - drug effects</subject><subject>Fibroblasts - metabolism</subject><subject>Fibrosis</subject><subject>Gene expression</subject><subject>Heart attacks</subject><subject>Heart failure</subject><subject>Male</subject><subject>Matrix Metalloproteinase 2 - genetics</subject><subject>Matrix Metalloproteinase 2 - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>MicroRNAs</subject><subject>MicroRNAs - antagonists &amp; inhibitors</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>miR-323-3p</subject><subject>Myocardium - metabolism</subject><subject>Myocardium - pathology</subject><subject>Original Paper</subject><subject>Physiology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>RNA Interference</subject><subject>RNA, Small Interfering - metabolism</subject><subject>TAC</subject><subject>TGFβ</subject><subject>TIMP3</subject><subject>Tissue Inhibitor of Metalloproteinase-3 - antagonists &amp; inhibitors</subject><subject>Tissue Inhibitor of Metalloproteinase-3 - genetics</subject><subject>Tissue Inhibitor of Metalloproteinase-3 - metabolism</subject><subject>Transforming Growth Factor beta1 - metabolism</subject><issn>1015-8987</issn><issn>1421-9778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>M--</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DOA</sourceid><recordid>eNptkUtP3DAUhS1EVR7tovsKRWJDFyl-xvaSjqAdiccIDWJpOX6MPGTGUztB4t_XNDQL1I19bX_36PgeAL4g-B0hJs8hhFQyyOQeOEQUo1pyLvZLDRGrhRT8ABzlvIblyCX-CA4IpIhhhg7B400wKd7fXtQEE12TXbVIcRN7l0vhch6Sq-6eXeqitvV8awfjbDXTyQZtqqvQpphDrtqXaqnTyvVhu6qW85sF-QQ-eN1l9_ltPwYPV5fL2a_6-u7nfHZxXRvakL4YJS1trEGNFhR66RvJtPBcS8gNazDBovVUekqZZ4YI3lhbVmeRF1ZrQo7BfNS1Ua_VLoWNTi8q6qD-XsS0Ujr1wXROGUowpxgS3jraSCiNpKLlVDCkPSaiaJ2NWrsUfw8u92oTsnFdp7cuDllhRDBmQkhY0NN36DoOaVt-qjCBqLgXqCnUt5EqI845OT8ZRFC9Jqem5Ap78qY4tBtnJ_JfVAX4OgJPr5NOEzD1n_73ebb4MRJqZz35A8Ito2c</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Zhang, JingChao </creator><creator>Lang, Yan</creator><creator>Guo, LongHui</creator><creator>Pei, Yu</creator><creator>Hao, Shuang</creator><creator>Liang, ZhenXing</creator><creator>Su, Gang</creator><creator>Shu, LiLiang</creator><creator>Liu, Hai</creator><creator>Huang, Chen</creator><creator>Xu, Jing</creator><general>S. Karger AG</general><general>Cell Physiol Biochem Press GmbH &amp; Co KG</general><scope>M--</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>DOA</scope></search><sort><creationdate>20180101</creationdate><title>MicroRNA-323a-3p Promotes Pressure Overload-Induced Cardiac Fibrosis by Targeting TIMP3</title><author>Zhang, JingChao  ; Lang, Yan ; Guo, LongHui ; Pei, Yu ; Hao, Shuang ; Liang, ZhenXing ; Su, Gang ; Shu, LiLiang ; Liu, Hai ; Huang, Chen ; Xu, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-973b46dc16a840f9f695a8f7a907c562328bf49f445f5c3876dd387ed1f8daa33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3' Untranslated Regions</topic><topic>Acute coronary syndromes</topic><topic>Angiotensin II - pharmacology</topic><topic>Animals</topic><topic>Antagomirs - metabolism</topic><topic>Ataxia</topic><topic>Biochemistry</topic><topic>Cardiac fibrosis</topic><topic>Cardiac function</topic><topic>Cardiology</topic><topic>Cardiomyopathy</topic><topic>Cells, Cultured</topic><topic>Collagen Type I - genetics</topic><topic>Collagen Type I - metabolism</topic><topic>Coronary vessels</topic><topic>Extracellular matrix</topic><topic>Fibroblasts</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - drug effects</topic><topic>Fibroblasts - metabolism</topic><topic>Fibrosis</topic><topic>Gene expression</topic><topic>Heart attacks</topic><topic>Heart failure</topic><topic>Male</topic><topic>Matrix Metalloproteinase 2 - genetics</topic><topic>Matrix Metalloproteinase 2 - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>MicroRNAs</topic><topic>MicroRNAs - antagonists &amp; inhibitors</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>miR-323-3p</topic><topic>Myocardium - metabolism</topic><topic>Myocardium - pathology</topic><topic>Original Paper</topic><topic>Physiology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>RNA Interference</topic><topic>RNA, Small Interfering - metabolism</topic><topic>TAC</topic><topic>TGFβ</topic><topic>TIMP3</topic><topic>Tissue Inhibitor of Metalloproteinase-3 - antagonists &amp; inhibitors</topic><topic>Tissue Inhibitor of Metalloproteinase-3 - genetics</topic><topic>Tissue Inhibitor of Metalloproteinase-3 - metabolism</topic><topic>Transforming Growth Factor beta1 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, JingChao </creatorcontrib><creatorcontrib>Lang, Yan</creatorcontrib><creatorcontrib>Guo, LongHui</creatorcontrib><creatorcontrib>Pei, Yu</creatorcontrib><creatorcontrib>Hao, Shuang</creatorcontrib><creatorcontrib>Liang, ZhenXing</creatorcontrib><creatorcontrib>Su, Gang</creatorcontrib><creatorcontrib>Shu, LiLiang</creatorcontrib><creatorcontrib>Liu, Hai</creatorcontrib><creatorcontrib>Huang, Chen</creatorcontrib><creatorcontrib>Xu, Jing</creatorcontrib><collection>Karger Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cellular physiology and biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, JingChao </au><au>Lang, Yan</au><au>Guo, LongHui</au><au>Pei, Yu</au><au>Hao, Shuang</au><au>Liang, ZhenXing</au><au>Su, Gang</au><au>Shu, LiLiang</au><au>Liu, Hai</au><au>Huang, Chen</au><au>Xu, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MicroRNA-323a-3p Promotes Pressure Overload-Induced Cardiac Fibrosis by Targeting TIMP3</atitle><jtitle>Cellular physiology and biochemistry</jtitle><addtitle>Cell Physiol Biochem</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>50</volume><issue>6</issue><spage>2176</spage><epage>2187</epage><pages>2176-2187</pages><issn>1015-8987</issn><eissn>1421-9778</eissn><abstract>Background/Aims: Cardiac fibrosis is a major cause of diverse cardiovascular diseases. MicroRNAs have recently been proven a novel class of regulators of cardiac fibrosis. In this study, we sought to investigate the role of miR-323a-3p and its mechanisms in regulating cardiac fibrosis. Methods: The transverse aortic constriction (TAC) mice model was induced and neonatal cardiac fibroblasts (CFs) were cultured. MTT (3- [4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide) assay was used to detect the cell viability. Echocardiography was used to evaluate cardiac function. Masson’s Trichrome stain was used to evaluate the development of fibrosis. Luciferase activity assay was performed to confirm the miRNA’s binding site. Real-time PCR and Western blot were used to evaluate the level of mRNA and protein. Results: MiR-323a-3p was found up-regulated in myocardial tissues subjected to TAC and in CFs cultured with Angiotensin Ⅱ (Ang Ⅱ). Overexpression of miR-323a-3p significantly increased the mRNA levels of collagen Ⅰ, collagen Ⅲ, MMP2 and MMP9, while inhibition of miR-323a-3p prevented the proliferation, collagen production and the protein level of transforming growth factor (TGF-β) in rat neonatal CFs. Strikingly, injection of antagomiR-323a-3p elevated cardiac function and inhibited the expression of TGF-β in the TAC mice. TIMP3 was a direct target of miR-323a-3p, as the overexpression of miR-323a-3p decreased the protein and mRNA levels of TIMP3. In the CFs with pre-treatment of Ang Ⅱ, siRNA-TIMP abolished the effects of AMO-323a-3p on the inhibition of the proliferation of CFs, the down-regulation of collagen Ⅰ and collagen Ⅲ, and the expression of TGF-β. Conclusion: Our findings provide evidence that miR-323a-3p promotes cardiac fibrosis via miR-323a-3p-TIMP3-TGF-β pathway. miR-323a-3p may be a new marker for cardiac fibrosis progression and that inhibition of miR-323a-3p may be a promising therapeutic target for the treatment of cardiac fibrosis.</abstract><cop>Basel, Switzerland</cop><pub>S. Karger AG</pub><pmid>30415251</pmid><doi>10.1159/000495059</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1015-8987
ispartof Cellular physiology and biochemistry, 2018-01, Vol.50 (6), p.2176-2187
issn 1015-8987
1421-9778
language eng
recordid cdi_proquest_miscellaneous_2132258890
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Karger Open Access
subjects 3' Untranslated Regions
Acute coronary syndromes
Angiotensin II - pharmacology
Animals
Antagomirs - metabolism
Ataxia
Biochemistry
Cardiac fibrosis
Cardiac function
Cardiology
Cardiomyopathy
Cells, Cultured
Collagen Type I - genetics
Collagen Type I - metabolism
Coronary vessels
Extracellular matrix
Fibroblasts
Fibroblasts - cytology
Fibroblasts - drug effects
Fibroblasts - metabolism
Fibrosis
Gene expression
Heart attacks
Heart failure
Male
Matrix Metalloproteinase 2 - genetics
Matrix Metalloproteinase 2 - metabolism
Mice
Mice, Inbred C57BL
MicroRNAs
MicroRNAs - antagonists & inhibitors
MicroRNAs - genetics
MicroRNAs - metabolism
miR-323-3p
Myocardium - metabolism
Myocardium - pathology
Original Paper
Physiology
Rats
Rats, Sprague-Dawley
RNA Interference
RNA, Small Interfering - metabolism
TAC
TGFβ
TIMP3
Tissue Inhibitor of Metalloproteinase-3 - antagonists & inhibitors
Tissue Inhibitor of Metalloproteinase-3 - genetics
Tissue Inhibitor of Metalloproteinase-3 - metabolism
Transforming Growth Factor beta1 - metabolism
title MicroRNA-323a-3p Promotes Pressure Overload-Induced Cardiac Fibrosis by Targeting TIMP3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A52%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_karge&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MicroRNA-323a-3p%20Promotes%20Pressure%20Overload-Induced%20Cardiac%20Fibrosis%20by%20Targeting%20TIMP3&rft.jtitle=Cellular%20physiology%20and%20biochemistry&rft.au=Zhang,%20JingChao%C2%A0&rft.date=2018-01-01&rft.volume=50&rft.issue=6&rft.spage=2176&rft.epage=2187&rft.pages=2176-2187&rft.issn=1015-8987&rft.eissn=1421-9778&rft_id=info:doi/10.1159/000495059&rft_dat=%3Cproquest_karge%3E2301907816%3C/proquest_karge%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2301907816&rft_id=info:pmid/30415251&rft_doaj_id=oai_doaj_org_article_c432742037be46909c948b74851af238&rfr_iscdi=true