Identification and characterization of carbapenem binding sites within the RND-transporter AcrB

Understanding the molecular determinants for recognition, binding and transport of antibiotics by multidrug efflux systems is important for basic research and useful for the design of more effective antimicrobial compounds. Imipenem and meropenem are two carbapenems whose antibacterial activity is k...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta. Biomembranes 2019-01, Vol.1861 (1), p.62-74
Hauptverfasser: Atzori, Alessio, Malviya, Viveka N., Malloci, Giuliano, Dreier, Jürg, Pos, Klaas M., Vargiu, Attilio V., Ruggerone, Paolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 74
container_issue 1
container_start_page 62
container_title Biochimica et biophysica acta. Biomembranes
container_volume 1861
creator Atzori, Alessio
Malviya, Viveka N.
Malloci, Giuliano
Dreier, Jürg
Pos, Klaas M.
Vargiu, Attilio V.
Ruggerone, Paolo
description Understanding the molecular determinants for recognition, binding and transport of antibiotics by multidrug efflux systems is important for basic research and useful for the design of more effective antimicrobial compounds. Imipenem and meropenem are two carbapenems whose antibacterial activity is known to be poorly and strongly affected by MexAB-OprM, the major efflux pump transporter in Pseudomonas aeruginosa. However, not much is known regarding recognition and transport of these compounds by AcrAB-TolC, which is the MexAB-OprM homologue in Escherichia coli and by definition the paradigm model for structural studies on efflux pumps. Prompted by this motivation, we unveiled the molecular details of the interaction of imipenem and meropenem with the transporter AcrB by combining computer simulations with biophysical experiments. Regarding the interaction with the two main substrate binding regions of AcrB, the so-called access and deep binding pockets, molecular dynamics simulations revealed imipenem to be more mobile than meropenem in the former, while comparable mobilities were observed in the latter. This result is in line with isothermal titration calorimetry, differential scanning experiments, and binding free energy calculations, indicating a higher affinity for meropenem than imipenem at the deep binding pocket, while both sharing similar affinities at the access pocket. Our findings rationalize how different physico-chemical properties of compounds reflect on their interactions with AcrB. As such, they constitute precious information to be exploited for the rational design of antibiotics able to evade efflux pumps. [Display omitted] •Recognition and transport of carbapenems by AcrB is still under debate.•Binding position of carbapenems rather than their orientation affects extrusion.•Chemical nature of β-lactams affects their affinity and mobility inside the transporter.•MER could be more likely a substrate of AcrB than IMI, similarly to MexB.
doi_str_mv 10.1016/j.bbamem.2018.10.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2132258765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005273618303110</els_id><sourcerecordid>2132258765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-521d091a864f4ad17aec419a29e5cf33ec16d5ec8b94b5f27ff8e89bb100db913</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOl7eQCRLNx2TNG3TjeBdQRRE1yGXEyfDNB2TjKJPb4eqS1cHfv7vHM6H0CElU0pofTKfaq066KaMUDFEU0LZBppQ0bQFqznbRBNCSFWwpqx30G5KczJgnFXbaKcknNZENBMk7yyE7J03Kvs-YBUsNjMVlckQ_dcY9g4bFbVaQoAOax-sD684-QwJf_g88wHnGeCnh8siRxXSso8Djc9MPN9HW04tEhz8zD30cn31fHFb3D_e3F2c3ReGM5GLilFLWqpEzR1XljYKDKetYi1UxpUlGFrbCozQLdeVY41zAkSrNSXE6paWe-h43LuM_dsKUpadTwYWCxWgXyXJaMlYJZq6Gqp8rJrYpxTByWX0nYqfkhK5VivnclQr12rX6aB2wI5-Lqx0B_YP-nU5FE7HAgx_vnuIMhkPwYD1EUyWtvf_X_gGHJaNIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132258765</pqid></control><display><type>article</type><title>Identification and characterization of carbapenem binding sites within the RND-transporter AcrB</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Atzori, Alessio ; Malviya, Viveka N. ; Malloci, Giuliano ; Dreier, Jürg ; Pos, Klaas M. ; Vargiu, Attilio V. ; Ruggerone, Paolo</creator><creatorcontrib>Atzori, Alessio ; Malviya, Viveka N. ; Malloci, Giuliano ; Dreier, Jürg ; Pos, Klaas M. ; Vargiu, Attilio V. ; Ruggerone, Paolo</creatorcontrib><description>Understanding the molecular determinants for recognition, binding and transport of antibiotics by multidrug efflux systems is important for basic research and useful for the design of more effective antimicrobial compounds. Imipenem and meropenem are two carbapenems whose antibacterial activity is known to be poorly and strongly affected by MexAB-OprM, the major efflux pump transporter in Pseudomonas aeruginosa. However, not much is known regarding recognition and transport of these compounds by AcrAB-TolC, which is the MexAB-OprM homologue in Escherichia coli and by definition the paradigm model for structural studies on efflux pumps. Prompted by this motivation, we unveiled the molecular details of the interaction of imipenem and meropenem with the transporter AcrB by combining computer simulations with biophysical experiments. Regarding the interaction with the two main substrate binding regions of AcrB, the so-called access and deep binding pockets, molecular dynamics simulations revealed imipenem to be more mobile than meropenem in the former, while comparable mobilities were observed in the latter. This result is in line with isothermal titration calorimetry, differential scanning experiments, and binding free energy calculations, indicating a higher affinity for meropenem than imipenem at the deep binding pocket, while both sharing similar affinities at the access pocket. Our findings rationalize how different physico-chemical properties of compounds reflect on their interactions with AcrB. As such, they constitute precious information to be exploited for the rational design of antibiotics able to evade efflux pumps. [Display omitted] •Recognition and transport of carbapenems by AcrB is still under debate.•Binding position of carbapenems rather than their orientation affects extrusion.•Chemical nature of β-lactams affects their affinity and mobility inside the transporter.•MER could be more likely a substrate of AcrB than IMI, similarly to MexB.</description><identifier>ISSN: 0005-2736</identifier><identifier>EISSN: 1879-2642</identifier><identifier>DOI: 10.1016/j.bbamem.2018.10.012</identifier><identifier>PMID: 30416087</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>AcrB ; Differential scanning experiments ; Free energy calculations ; Isothermal titration calorimetry ; Molecular dynamics simulations ; Multi-drug resistance</subject><ispartof>Biochimica et biophysica acta. Biomembranes, 2019-01, Vol.1861 (1), p.62-74</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright © 2018 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-521d091a864f4ad17aec419a29e5cf33ec16d5ec8b94b5f27ff8e89bb100db913</citedby><cites>FETCH-LOGICAL-c428t-521d091a864f4ad17aec419a29e5cf33ec16d5ec8b94b5f27ff8e89bb100db913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0005273618303110$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30416087$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Atzori, Alessio</creatorcontrib><creatorcontrib>Malviya, Viveka N.</creatorcontrib><creatorcontrib>Malloci, Giuliano</creatorcontrib><creatorcontrib>Dreier, Jürg</creatorcontrib><creatorcontrib>Pos, Klaas M.</creatorcontrib><creatorcontrib>Vargiu, Attilio V.</creatorcontrib><creatorcontrib>Ruggerone, Paolo</creatorcontrib><title>Identification and characterization of carbapenem binding sites within the RND-transporter AcrB</title><title>Biochimica et biophysica acta. Biomembranes</title><addtitle>Biochim Biophys Acta Biomembr</addtitle><description>Understanding the molecular determinants for recognition, binding and transport of antibiotics by multidrug efflux systems is important for basic research and useful for the design of more effective antimicrobial compounds. Imipenem and meropenem are two carbapenems whose antibacterial activity is known to be poorly and strongly affected by MexAB-OprM, the major efflux pump transporter in Pseudomonas aeruginosa. However, not much is known regarding recognition and transport of these compounds by AcrAB-TolC, which is the MexAB-OprM homologue in Escherichia coli and by definition the paradigm model for structural studies on efflux pumps. Prompted by this motivation, we unveiled the molecular details of the interaction of imipenem and meropenem with the transporter AcrB by combining computer simulations with biophysical experiments. Regarding the interaction with the two main substrate binding regions of AcrB, the so-called access and deep binding pockets, molecular dynamics simulations revealed imipenem to be more mobile than meropenem in the former, while comparable mobilities were observed in the latter. This result is in line with isothermal titration calorimetry, differential scanning experiments, and binding free energy calculations, indicating a higher affinity for meropenem than imipenem at the deep binding pocket, while both sharing similar affinities at the access pocket. Our findings rationalize how different physico-chemical properties of compounds reflect on their interactions with AcrB. As such, they constitute precious information to be exploited for the rational design of antibiotics able to evade efflux pumps. [Display omitted] •Recognition and transport of carbapenems by AcrB is still under debate.•Binding position of carbapenems rather than their orientation affects extrusion.•Chemical nature of β-lactams affects their affinity and mobility inside the transporter.•MER could be more likely a substrate of AcrB than IMI, similarly to MexB.</description><subject>AcrB</subject><subject>Differential scanning experiments</subject><subject>Free energy calculations</subject><subject>Isothermal titration calorimetry</subject><subject>Molecular dynamics simulations</subject><subject>Multi-drug resistance</subject><issn>0005-2736</issn><issn>1879-2642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOl7eQCRLNx2TNG3TjeBdQRRE1yGXEyfDNB2TjKJPb4eqS1cHfv7vHM6H0CElU0pofTKfaq066KaMUDFEU0LZBppQ0bQFqznbRBNCSFWwpqx30G5KczJgnFXbaKcknNZENBMk7yyE7J03Kvs-YBUsNjMVlckQ_dcY9g4bFbVaQoAOax-sD684-QwJf_g88wHnGeCnh8siRxXSso8Djc9MPN9HW04tEhz8zD30cn31fHFb3D_e3F2c3ReGM5GLilFLWqpEzR1XljYKDKetYi1UxpUlGFrbCozQLdeVY41zAkSrNSXE6paWe-h43LuM_dsKUpadTwYWCxWgXyXJaMlYJZq6Gqp8rJrYpxTByWX0nYqfkhK5VivnclQr12rX6aB2wI5-Lqx0B_YP-nU5FE7HAgx_vnuIMhkPwYD1EUyWtvf_X_gGHJaNIA</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Atzori, Alessio</creator><creator>Malviya, Viveka N.</creator><creator>Malloci, Giuliano</creator><creator>Dreier, Jürg</creator><creator>Pos, Klaas M.</creator><creator>Vargiu, Attilio V.</creator><creator>Ruggerone, Paolo</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201901</creationdate><title>Identification and characterization of carbapenem binding sites within the RND-transporter AcrB</title><author>Atzori, Alessio ; Malviya, Viveka N. ; Malloci, Giuliano ; Dreier, Jürg ; Pos, Klaas M. ; Vargiu, Attilio V. ; Ruggerone, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-521d091a864f4ad17aec419a29e5cf33ec16d5ec8b94b5f27ff8e89bb100db913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>AcrB</topic><topic>Differential scanning experiments</topic><topic>Free energy calculations</topic><topic>Isothermal titration calorimetry</topic><topic>Molecular dynamics simulations</topic><topic>Multi-drug resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atzori, Alessio</creatorcontrib><creatorcontrib>Malviya, Viveka N.</creatorcontrib><creatorcontrib>Malloci, Giuliano</creatorcontrib><creatorcontrib>Dreier, Jürg</creatorcontrib><creatorcontrib>Pos, Klaas M.</creatorcontrib><creatorcontrib>Vargiu, Attilio V.</creatorcontrib><creatorcontrib>Ruggerone, Paolo</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochimica et biophysica acta. Biomembranes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atzori, Alessio</au><au>Malviya, Viveka N.</au><au>Malloci, Giuliano</au><au>Dreier, Jürg</au><au>Pos, Klaas M.</au><au>Vargiu, Attilio V.</au><au>Ruggerone, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification and characterization of carbapenem binding sites within the RND-transporter AcrB</atitle><jtitle>Biochimica et biophysica acta. Biomembranes</jtitle><addtitle>Biochim Biophys Acta Biomembr</addtitle><date>2019-01</date><risdate>2019</risdate><volume>1861</volume><issue>1</issue><spage>62</spage><epage>74</epage><pages>62-74</pages><issn>0005-2736</issn><eissn>1879-2642</eissn><abstract>Understanding the molecular determinants for recognition, binding and transport of antibiotics by multidrug efflux systems is important for basic research and useful for the design of more effective antimicrobial compounds. Imipenem and meropenem are two carbapenems whose antibacterial activity is known to be poorly and strongly affected by MexAB-OprM, the major efflux pump transporter in Pseudomonas aeruginosa. However, not much is known regarding recognition and transport of these compounds by AcrAB-TolC, which is the MexAB-OprM homologue in Escherichia coli and by definition the paradigm model for structural studies on efflux pumps. Prompted by this motivation, we unveiled the molecular details of the interaction of imipenem and meropenem with the transporter AcrB by combining computer simulations with biophysical experiments. Regarding the interaction with the two main substrate binding regions of AcrB, the so-called access and deep binding pockets, molecular dynamics simulations revealed imipenem to be more mobile than meropenem in the former, while comparable mobilities were observed in the latter. This result is in line with isothermal titration calorimetry, differential scanning experiments, and binding free energy calculations, indicating a higher affinity for meropenem than imipenem at the deep binding pocket, while both sharing similar affinities at the access pocket. Our findings rationalize how different physico-chemical properties of compounds reflect on their interactions with AcrB. As such, they constitute precious information to be exploited for the rational design of antibiotics able to evade efflux pumps. [Display omitted] •Recognition and transport of carbapenems by AcrB is still under debate.•Binding position of carbapenems rather than their orientation affects extrusion.•Chemical nature of β-lactams affects their affinity and mobility inside the transporter.•MER could be more likely a substrate of AcrB than IMI, similarly to MexB.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>30416087</pmid><doi>10.1016/j.bbamem.2018.10.012</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0005-2736
ispartof Biochimica et biophysica acta. Biomembranes, 2019-01, Vol.1861 (1), p.62-74
issn 0005-2736
1879-2642
language eng
recordid cdi_proquest_miscellaneous_2132258765
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects AcrB
Differential scanning experiments
Free energy calculations
Isothermal titration calorimetry
Molecular dynamics simulations
Multi-drug resistance
title Identification and characterization of carbapenem binding sites within the RND-transporter AcrB
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T00%3A34%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20and%20characterization%20of%20carbapenem%20binding%20sites%20within%20the%20RND-transporter%20AcrB&rft.jtitle=Biochimica%20et%20biophysica%20acta.%20Biomembranes&rft.au=Atzori,%20Alessio&rft.date=2019-01&rft.volume=1861&rft.issue=1&rft.spage=62&rft.epage=74&rft.pages=62-74&rft.issn=0005-2736&rft.eissn=1879-2642&rft_id=info:doi/10.1016/j.bbamem.2018.10.012&rft_dat=%3Cproquest_cross%3E2132258765%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132258765&rft_id=info:pmid/30416087&rft_els_id=S0005273618303110&rfr_iscdi=true