The sacrificial inactivation of the blue-light photosensor cryptochrome from Drosophila melanogaster
Drosophila melanogaster cryptochrome functions as the primary blue-light receptor that mediates circadian photo entrainment. Absorption of a photon leads to reduction of the protein-bound FAD via consecutive electron transfer along a conserved tryptophan tetrad resembling the signalling state requir...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2018-11, Vol.20 (45), p.28767-28776 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28776 |
---|---|
container_issue | 45 |
container_start_page | 28767 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 20 |
creator | Kutta, Roger Jan Archipowa, Nataliya Scrutton, Nigel Shaun |
description | Drosophila melanogaster cryptochrome functions as the primary blue-light receptor that mediates circadian photo entrainment. Absorption of a photon leads to reduction of the protein-bound FAD via consecutive electron transfer along a conserved tryptophan tetrad resembling the signalling state required for conformational changes and induction of subsequent signalling cascades. However, how the initial photochemistry and subsequent dark processes leading to downstream signalling are linked to each other at the molecular level is still poorly understood. Here, we investigated in detail the initial photochemical events in DmCRY by time-resolved and stationary absorption spectroscopy combined with quantum chemical and molecular dynamics calculations. We resolved the early events along the conserved tryptophan tetrad and the final deprotonation of the terminal tryptophanyl radical cation. These initial events lead to conformational changes, such as the known C-terminal tail release, Trp decomposition, and finally FAD release providing evidence that DmCRY does not undergo a photocycle. We propose that light is a negative regulator of DmCRY stability even under in vitro conditions where the proteasomal machinery is missing, that is in line with its biological function, i.e. entrainment of the circadian clock. |
doi_str_mv | 10.1039/c8cp04671a |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2132255217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132255217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-7681ded99e490b8717f84b5b64070c145b91ae6601c48eb6b2e99d18093a373e3</originalsourceid><addsrcrecordid>eNpdkE9P3DAQxa2qqGyBSz9AZamXqlLAEzt2fERboJWQ4EDPkeNMNkZJnNoOEt8eb6F74DB_pPnp6c0j5Auwc2BcX9jaLkxIBeYD2YCQvNCsFh8Pu5LH5HOMj4wxqIB_IsecCVCaiQ3pHgak0djgemedGambjU3uySTnZ-p7mvK9HVcsRrcbEl0Gn3zEOfpAbXhekrdD8BPSPnf6M_jol8GNhk44mtnvTEwYTslRb8aIZ2_zhPy5vnrY_ipu725-by9vC8t1mQola-iw0xqFZm2tQPW1aKtWCqaYBVG1GgxKycCKGlvZlqh1BzXT3HDFkZ-Q76-6S_B_V4ypmVy0OGYn6NfYlMDLsqpKUBn99g599GuYs7s9JUueCzL145Wy-bEYsG-W4CYTnhtgzT77Zltv7_9lf5nhr2-Sazthd0D_h81fAC0YfyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2136233621</pqid></control><display><type>article</type><title>The sacrificial inactivation of the blue-light photosensor cryptochrome from Drosophila melanogaster</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Kutta, Roger Jan ; Archipowa, Nataliya ; Scrutton, Nigel Shaun</creator><creatorcontrib>Kutta, Roger Jan ; Archipowa, Nataliya ; Scrutton, Nigel Shaun</creatorcontrib><description>Drosophila melanogaster cryptochrome functions as the primary blue-light receptor that mediates circadian photo entrainment. Absorption of a photon leads to reduction of the protein-bound FAD via consecutive electron transfer along a conserved tryptophan tetrad resembling the signalling state required for conformational changes and induction of subsequent signalling cascades. However, how the initial photochemistry and subsequent dark processes leading to downstream signalling are linked to each other at the molecular level is still poorly understood. Here, we investigated in detail the initial photochemical events in DmCRY by time-resolved and stationary absorption spectroscopy combined with quantum chemical and molecular dynamics calculations. We resolved the early events along the conserved tryptophan tetrad and the final deprotonation of the terminal tryptophanyl radical cation. These initial events lead to conformational changes, such as the known C-terminal tail release, Trp decomposition, and finally FAD release providing evidence that DmCRY does not undergo a photocycle. We propose that light is a negative regulator of DmCRY stability even under in vitro conditions where the proteasomal machinery is missing, that is in line with its biological function, i.e. entrainment of the circadian clock.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c8cp04671a</identifier><identifier>PMID: 30417904</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Animals ; Cascades ; Cryptochromes - chemistry ; Cryptochromes - radiation effects ; Deactivation ; Drosophila melanogaster - chemistry ; Electron transfer ; Electrons ; Entrainment ; Flavin-Adenine Dinucleotide - chemistry ; Fruit flies ; Insects ; Light ; Models, Chemical ; Molecular dynamics ; Molecular Dynamics Simulation ; Organic chemistry ; Oxidation-Reduction ; Photochemistry ; Protein Conformation ; Proteins ; Protons ; Quantum chemistry ; Quantum Theory ; Signaling ; Tryptophan ; Tryptophan - chemistry</subject><ispartof>Physical chemistry chemical physics : PCCP, 2018-11, Vol.20 (45), p.28767-28776</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-7681ded99e490b8717f84b5b64070c145b91ae6601c48eb6b2e99d18093a373e3</citedby><cites>FETCH-LOGICAL-c392t-7681ded99e490b8717f84b5b64070c145b91ae6601c48eb6b2e99d18093a373e3</cites><orcidid>0000-0002-8519-2819 ; 0000-0002-4182-3500 ; 0000-0003-3368-9863</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30417904$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kutta, Roger Jan</creatorcontrib><creatorcontrib>Archipowa, Nataliya</creatorcontrib><creatorcontrib>Scrutton, Nigel Shaun</creatorcontrib><title>The sacrificial inactivation of the blue-light photosensor cryptochrome from Drosophila melanogaster</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Drosophila melanogaster cryptochrome functions as the primary blue-light receptor that mediates circadian photo entrainment. Absorption of a photon leads to reduction of the protein-bound FAD via consecutive electron transfer along a conserved tryptophan tetrad resembling the signalling state required for conformational changes and induction of subsequent signalling cascades. However, how the initial photochemistry and subsequent dark processes leading to downstream signalling are linked to each other at the molecular level is still poorly understood. Here, we investigated in detail the initial photochemical events in DmCRY by time-resolved and stationary absorption spectroscopy combined with quantum chemical and molecular dynamics calculations. We resolved the early events along the conserved tryptophan tetrad and the final deprotonation of the terminal tryptophanyl radical cation. These initial events lead to conformational changes, such as the known C-terminal tail release, Trp decomposition, and finally FAD release providing evidence that DmCRY does not undergo a photocycle. We propose that light is a negative regulator of DmCRY stability even under in vitro conditions where the proteasomal machinery is missing, that is in line with its biological function, i.e. entrainment of the circadian clock.</description><subject>Animals</subject><subject>Cascades</subject><subject>Cryptochromes - chemistry</subject><subject>Cryptochromes - radiation effects</subject><subject>Deactivation</subject><subject>Drosophila melanogaster - chemistry</subject><subject>Electron transfer</subject><subject>Electrons</subject><subject>Entrainment</subject><subject>Flavin-Adenine Dinucleotide - chemistry</subject><subject>Fruit flies</subject><subject>Insects</subject><subject>Light</subject><subject>Models, Chemical</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Organic chemistry</subject><subject>Oxidation-Reduction</subject><subject>Photochemistry</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Protons</subject><subject>Quantum chemistry</subject><subject>Quantum Theory</subject><subject>Signaling</subject><subject>Tryptophan</subject><subject>Tryptophan - chemistry</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkE9P3DAQxa2qqGyBSz9AZamXqlLAEzt2fERboJWQ4EDPkeNMNkZJnNoOEt8eb6F74DB_pPnp6c0j5Auwc2BcX9jaLkxIBeYD2YCQvNCsFh8Pu5LH5HOMj4wxqIB_IsecCVCaiQ3pHgak0djgemedGambjU3uySTnZ-p7mvK9HVcsRrcbEl0Gn3zEOfpAbXhekrdD8BPSPnf6M_jol8GNhk44mtnvTEwYTslRb8aIZ2_zhPy5vnrY_ipu725-by9vC8t1mQola-iw0xqFZm2tQPW1aKtWCqaYBVG1GgxKycCKGlvZlqh1BzXT3HDFkZ-Q76-6S_B_V4ypmVy0OGYn6NfYlMDLsqpKUBn99g599GuYs7s9JUueCzL145Wy-bEYsG-W4CYTnhtgzT77Zltv7_9lf5nhr2-Sazthd0D_h81fAC0YfyA</recordid><startdate>20181121</startdate><enddate>20181121</enddate><creator>Kutta, Roger Jan</creator><creator>Archipowa, Nataliya</creator><creator>Scrutton, Nigel Shaun</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8519-2819</orcidid><orcidid>https://orcid.org/0000-0002-4182-3500</orcidid><orcidid>https://orcid.org/0000-0003-3368-9863</orcidid></search><sort><creationdate>20181121</creationdate><title>The sacrificial inactivation of the blue-light photosensor cryptochrome from Drosophila melanogaster</title><author>Kutta, Roger Jan ; Archipowa, Nataliya ; Scrutton, Nigel Shaun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-7681ded99e490b8717f84b5b64070c145b91ae6601c48eb6b2e99d18093a373e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Cascades</topic><topic>Cryptochromes - chemistry</topic><topic>Cryptochromes - radiation effects</topic><topic>Deactivation</topic><topic>Drosophila melanogaster - chemistry</topic><topic>Electron transfer</topic><topic>Electrons</topic><topic>Entrainment</topic><topic>Flavin-Adenine Dinucleotide - chemistry</topic><topic>Fruit flies</topic><topic>Insects</topic><topic>Light</topic><topic>Models, Chemical</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Organic chemistry</topic><topic>Oxidation-Reduction</topic><topic>Photochemistry</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Protons</topic><topic>Quantum chemistry</topic><topic>Quantum Theory</topic><topic>Signaling</topic><topic>Tryptophan</topic><topic>Tryptophan - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kutta, Roger Jan</creatorcontrib><creatorcontrib>Archipowa, Nataliya</creatorcontrib><creatorcontrib>Scrutton, Nigel Shaun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kutta, Roger Jan</au><au>Archipowa, Nataliya</au><au>Scrutton, Nigel Shaun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The sacrificial inactivation of the blue-light photosensor cryptochrome from Drosophila melanogaster</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2018-11-21</date><risdate>2018</risdate><volume>20</volume><issue>45</issue><spage>28767</spage><epage>28776</epage><pages>28767-28776</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Drosophila melanogaster cryptochrome functions as the primary blue-light receptor that mediates circadian photo entrainment. Absorption of a photon leads to reduction of the protein-bound FAD via consecutive electron transfer along a conserved tryptophan tetrad resembling the signalling state required for conformational changes and induction of subsequent signalling cascades. However, how the initial photochemistry and subsequent dark processes leading to downstream signalling are linked to each other at the molecular level is still poorly understood. Here, we investigated in detail the initial photochemical events in DmCRY by time-resolved and stationary absorption spectroscopy combined with quantum chemical and molecular dynamics calculations. We resolved the early events along the conserved tryptophan tetrad and the final deprotonation of the terminal tryptophanyl radical cation. These initial events lead to conformational changes, such as the known C-terminal tail release, Trp decomposition, and finally FAD release providing evidence that DmCRY does not undergo a photocycle. We propose that light is a negative regulator of DmCRY stability even under in vitro conditions where the proteasomal machinery is missing, that is in line with its biological function, i.e. entrainment of the circadian clock.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30417904</pmid><doi>10.1039/c8cp04671a</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8519-2819</orcidid><orcidid>https://orcid.org/0000-0002-4182-3500</orcidid><orcidid>https://orcid.org/0000-0003-3368-9863</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2018-11, Vol.20 (45), p.28767-28776 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_2132255217 |
source | MEDLINE; Royal Society Of Chemistry Journals; Alma/SFX Local Collection |
subjects | Animals Cascades Cryptochromes - chemistry Cryptochromes - radiation effects Deactivation Drosophila melanogaster - chemistry Electron transfer Electrons Entrainment Flavin-Adenine Dinucleotide - chemistry Fruit flies Insects Light Models, Chemical Molecular dynamics Molecular Dynamics Simulation Organic chemistry Oxidation-Reduction Photochemistry Protein Conformation Proteins Protons Quantum chemistry Quantum Theory Signaling Tryptophan Tryptophan - chemistry |
title | The sacrificial inactivation of the blue-light photosensor cryptochrome from Drosophila melanogaster |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A58%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20sacrificial%20inactivation%20of%20the%20blue-light%20photosensor%20cryptochrome%20from%20Drosophila%20melanogaster&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Kutta,%20Roger%20Jan&rft.date=2018-11-21&rft.volume=20&rft.issue=45&rft.spage=28767&rft.epage=28776&rft.pages=28767-28776&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c8cp04671a&rft_dat=%3Cproquest_cross%3E2132255217%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2136233621&rft_id=info:pmid/30417904&rfr_iscdi=true |