The sacrificial inactivation of the blue-light photosensor cryptochrome from Drosophila melanogaster

Drosophila melanogaster cryptochrome functions as the primary blue-light receptor that mediates circadian photo entrainment. Absorption of a photon leads to reduction of the protein-bound FAD via consecutive electron transfer along a conserved tryptophan tetrad resembling the signalling state requir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2018-11, Vol.20 (45), p.28767-28776
Hauptverfasser: Kutta, Roger Jan, Archipowa, Nataliya, Scrutton, Nigel Shaun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28776
container_issue 45
container_start_page 28767
container_title Physical chemistry chemical physics : PCCP
container_volume 20
creator Kutta, Roger Jan
Archipowa, Nataliya
Scrutton, Nigel Shaun
description Drosophila melanogaster cryptochrome functions as the primary blue-light receptor that mediates circadian photo entrainment. Absorption of a photon leads to reduction of the protein-bound FAD via consecutive electron transfer along a conserved tryptophan tetrad resembling the signalling state required for conformational changes and induction of subsequent signalling cascades. However, how the initial photochemistry and subsequent dark processes leading to downstream signalling are linked to each other at the molecular level is still poorly understood. Here, we investigated in detail the initial photochemical events in DmCRY by time-resolved and stationary absorption spectroscopy combined with quantum chemical and molecular dynamics calculations. We resolved the early events along the conserved tryptophan tetrad and the final deprotonation of the terminal tryptophanyl radical cation. These initial events lead to conformational changes, such as the known C-terminal tail release, Trp decomposition, and finally FAD release providing evidence that DmCRY does not undergo a photocycle. We propose that light is a negative regulator of DmCRY stability even under in vitro conditions where the proteasomal machinery is missing, that is in line with its biological function, i.e. entrainment of the circadian clock.
doi_str_mv 10.1039/c8cp04671a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2132255217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132255217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-7681ded99e490b8717f84b5b64070c145b91ae6601c48eb6b2e99d18093a373e3</originalsourceid><addsrcrecordid>eNpdkE9P3DAQxa2qqGyBSz9AZamXqlLAEzt2fERboJWQ4EDPkeNMNkZJnNoOEt8eb6F74DB_pPnp6c0j5Auwc2BcX9jaLkxIBeYD2YCQvNCsFh8Pu5LH5HOMj4wxqIB_IsecCVCaiQ3pHgak0djgemedGambjU3uySTnZ-p7mvK9HVcsRrcbEl0Gn3zEOfpAbXhekrdD8BPSPnf6M_jol8GNhk44mtnvTEwYTslRb8aIZ2_zhPy5vnrY_ipu725-by9vC8t1mQola-iw0xqFZm2tQPW1aKtWCqaYBVG1GgxKycCKGlvZlqh1BzXT3HDFkZ-Q76-6S_B_V4ypmVy0OGYn6NfYlMDLsqpKUBn99g599GuYs7s9JUueCzL145Wy-bEYsG-W4CYTnhtgzT77Zltv7_9lf5nhr2-Sazthd0D_h81fAC0YfyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2136233621</pqid></control><display><type>article</type><title>The sacrificial inactivation of the blue-light photosensor cryptochrome from Drosophila melanogaster</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Kutta, Roger Jan ; Archipowa, Nataliya ; Scrutton, Nigel Shaun</creator><creatorcontrib>Kutta, Roger Jan ; Archipowa, Nataliya ; Scrutton, Nigel Shaun</creatorcontrib><description>Drosophila melanogaster cryptochrome functions as the primary blue-light receptor that mediates circadian photo entrainment. Absorption of a photon leads to reduction of the protein-bound FAD via consecutive electron transfer along a conserved tryptophan tetrad resembling the signalling state required for conformational changes and induction of subsequent signalling cascades. However, how the initial photochemistry and subsequent dark processes leading to downstream signalling are linked to each other at the molecular level is still poorly understood. Here, we investigated in detail the initial photochemical events in DmCRY by time-resolved and stationary absorption spectroscopy combined with quantum chemical and molecular dynamics calculations. We resolved the early events along the conserved tryptophan tetrad and the final deprotonation of the terminal tryptophanyl radical cation. These initial events lead to conformational changes, such as the known C-terminal tail release, Trp decomposition, and finally FAD release providing evidence that DmCRY does not undergo a photocycle. We propose that light is a negative regulator of DmCRY stability even under in vitro conditions where the proteasomal machinery is missing, that is in line with its biological function, i.e. entrainment of the circadian clock.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c8cp04671a</identifier><identifier>PMID: 30417904</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Animals ; Cascades ; Cryptochromes - chemistry ; Cryptochromes - radiation effects ; Deactivation ; Drosophila melanogaster - chemistry ; Electron transfer ; Electrons ; Entrainment ; Flavin-Adenine Dinucleotide - chemistry ; Fruit flies ; Insects ; Light ; Models, Chemical ; Molecular dynamics ; Molecular Dynamics Simulation ; Organic chemistry ; Oxidation-Reduction ; Photochemistry ; Protein Conformation ; Proteins ; Protons ; Quantum chemistry ; Quantum Theory ; Signaling ; Tryptophan ; Tryptophan - chemistry</subject><ispartof>Physical chemistry chemical physics : PCCP, 2018-11, Vol.20 (45), p.28767-28776</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-7681ded99e490b8717f84b5b64070c145b91ae6601c48eb6b2e99d18093a373e3</citedby><cites>FETCH-LOGICAL-c392t-7681ded99e490b8717f84b5b64070c145b91ae6601c48eb6b2e99d18093a373e3</cites><orcidid>0000-0002-8519-2819 ; 0000-0002-4182-3500 ; 0000-0003-3368-9863</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30417904$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kutta, Roger Jan</creatorcontrib><creatorcontrib>Archipowa, Nataliya</creatorcontrib><creatorcontrib>Scrutton, Nigel Shaun</creatorcontrib><title>The sacrificial inactivation of the blue-light photosensor cryptochrome from Drosophila melanogaster</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Drosophila melanogaster cryptochrome functions as the primary blue-light receptor that mediates circadian photo entrainment. Absorption of a photon leads to reduction of the protein-bound FAD via consecutive electron transfer along a conserved tryptophan tetrad resembling the signalling state required for conformational changes and induction of subsequent signalling cascades. However, how the initial photochemistry and subsequent dark processes leading to downstream signalling are linked to each other at the molecular level is still poorly understood. Here, we investigated in detail the initial photochemical events in DmCRY by time-resolved and stationary absorption spectroscopy combined with quantum chemical and molecular dynamics calculations. We resolved the early events along the conserved tryptophan tetrad and the final deprotonation of the terminal tryptophanyl radical cation. These initial events lead to conformational changes, such as the known C-terminal tail release, Trp decomposition, and finally FAD release providing evidence that DmCRY does not undergo a photocycle. We propose that light is a negative regulator of DmCRY stability even under in vitro conditions where the proteasomal machinery is missing, that is in line with its biological function, i.e. entrainment of the circadian clock.</description><subject>Animals</subject><subject>Cascades</subject><subject>Cryptochromes - chemistry</subject><subject>Cryptochromes - radiation effects</subject><subject>Deactivation</subject><subject>Drosophila melanogaster - chemistry</subject><subject>Electron transfer</subject><subject>Electrons</subject><subject>Entrainment</subject><subject>Flavin-Adenine Dinucleotide - chemistry</subject><subject>Fruit flies</subject><subject>Insects</subject><subject>Light</subject><subject>Models, Chemical</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Organic chemistry</subject><subject>Oxidation-Reduction</subject><subject>Photochemistry</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Protons</subject><subject>Quantum chemistry</subject><subject>Quantum Theory</subject><subject>Signaling</subject><subject>Tryptophan</subject><subject>Tryptophan - chemistry</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkE9P3DAQxa2qqGyBSz9AZamXqlLAEzt2fERboJWQ4EDPkeNMNkZJnNoOEt8eb6F74DB_pPnp6c0j5Auwc2BcX9jaLkxIBeYD2YCQvNCsFh8Pu5LH5HOMj4wxqIB_IsecCVCaiQ3pHgak0djgemedGambjU3uySTnZ-p7mvK9HVcsRrcbEl0Gn3zEOfpAbXhekrdD8BPSPnf6M_jol8GNhk44mtnvTEwYTslRb8aIZ2_zhPy5vnrY_ipu725-by9vC8t1mQola-iw0xqFZm2tQPW1aKtWCqaYBVG1GgxKycCKGlvZlqh1BzXT3HDFkZ-Q76-6S_B_V4ypmVy0OGYn6NfYlMDLsqpKUBn99g599GuYs7s9JUueCzL145Wy-bEYsG-W4CYTnhtgzT77Zltv7_9lf5nhr2-Sazthd0D_h81fAC0YfyA</recordid><startdate>20181121</startdate><enddate>20181121</enddate><creator>Kutta, Roger Jan</creator><creator>Archipowa, Nataliya</creator><creator>Scrutton, Nigel Shaun</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8519-2819</orcidid><orcidid>https://orcid.org/0000-0002-4182-3500</orcidid><orcidid>https://orcid.org/0000-0003-3368-9863</orcidid></search><sort><creationdate>20181121</creationdate><title>The sacrificial inactivation of the blue-light photosensor cryptochrome from Drosophila melanogaster</title><author>Kutta, Roger Jan ; Archipowa, Nataliya ; Scrutton, Nigel Shaun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-7681ded99e490b8717f84b5b64070c145b91ae6601c48eb6b2e99d18093a373e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Cascades</topic><topic>Cryptochromes - chemistry</topic><topic>Cryptochromes - radiation effects</topic><topic>Deactivation</topic><topic>Drosophila melanogaster - chemistry</topic><topic>Electron transfer</topic><topic>Electrons</topic><topic>Entrainment</topic><topic>Flavin-Adenine Dinucleotide - chemistry</topic><topic>Fruit flies</topic><topic>Insects</topic><topic>Light</topic><topic>Models, Chemical</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Organic chemistry</topic><topic>Oxidation-Reduction</topic><topic>Photochemistry</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Protons</topic><topic>Quantum chemistry</topic><topic>Quantum Theory</topic><topic>Signaling</topic><topic>Tryptophan</topic><topic>Tryptophan - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kutta, Roger Jan</creatorcontrib><creatorcontrib>Archipowa, Nataliya</creatorcontrib><creatorcontrib>Scrutton, Nigel Shaun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kutta, Roger Jan</au><au>Archipowa, Nataliya</au><au>Scrutton, Nigel Shaun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The sacrificial inactivation of the blue-light photosensor cryptochrome from Drosophila melanogaster</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2018-11-21</date><risdate>2018</risdate><volume>20</volume><issue>45</issue><spage>28767</spage><epage>28776</epage><pages>28767-28776</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Drosophila melanogaster cryptochrome functions as the primary blue-light receptor that mediates circadian photo entrainment. Absorption of a photon leads to reduction of the protein-bound FAD via consecutive electron transfer along a conserved tryptophan tetrad resembling the signalling state required for conformational changes and induction of subsequent signalling cascades. However, how the initial photochemistry and subsequent dark processes leading to downstream signalling are linked to each other at the molecular level is still poorly understood. Here, we investigated in detail the initial photochemical events in DmCRY by time-resolved and stationary absorption spectroscopy combined with quantum chemical and molecular dynamics calculations. We resolved the early events along the conserved tryptophan tetrad and the final deprotonation of the terminal tryptophanyl radical cation. These initial events lead to conformational changes, such as the known C-terminal tail release, Trp decomposition, and finally FAD release providing evidence that DmCRY does not undergo a photocycle. We propose that light is a negative regulator of DmCRY stability even under in vitro conditions where the proteasomal machinery is missing, that is in line with its biological function, i.e. entrainment of the circadian clock.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30417904</pmid><doi>10.1039/c8cp04671a</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8519-2819</orcidid><orcidid>https://orcid.org/0000-0002-4182-3500</orcidid><orcidid>https://orcid.org/0000-0003-3368-9863</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2018-11, Vol.20 (45), p.28767-28776
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_2132255217
source MEDLINE; Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Animals
Cascades
Cryptochromes - chemistry
Cryptochromes - radiation effects
Deactivation
Drosophila melanogaster - chemistry
Electron transfer
Electrons
Entrainment
Flavin-Adenine Dinucleotide - chemistry
Fruit flies
Insects
Light
Models, Chemical
Molecular dynamics
Molecular Dynamics Simulation
Organic chemistry
Oxidation-Reduction
Photochemistry
Protein Conformation
Proteins
Protons
Quantum chemistry
Quantum Theory
Signaling
Tryptophan
Tryptophan - chemistry
title The sacrificial inactivation of the blue-light photosensor cryptochrome from Drosophila melanogaster
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A58%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20sacrificial%20inactivation%20of%20the%20blue-light%20photosensor%20cryptochrome%20from%20Drosophila%20melanogaster&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Kutta,%20Roger%20Jan&rft.date=2018-11-21&rft.volume=20&rft.issue=45&rft.spage=28767&rft.epage=28776&rft.pages=28767-28776&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c8cp04671a&rft_dat=%3Cproquest_cross%3E2132255217%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2136233621&rft_id=info:pmid/30417904&rfr_iscdi=true