Structural and sequence diversity of eukaryotic transposable elements
The majority of eukaryotic genomes contain a large fraction of repetitive sequences that primarily originate from transpositional bursts of transposable elements (TEs). Repbase serves as a database for eukaryotic repetitive sequences and has now become the largest collection of eukaryotic TEs. Durin...
Gespeichert in:
Veröffentlicht in: | Genes & Genetic Systems 2019/12/01, Vol.94(6), pp.233-252 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 252 |
---|---|
container_issue | 6 |
container_start_page | 233 |
container_title | Genes & Genetic Systems |
container_volume | 94 |
creator | Kojima, Kenji K. |
description | The majority of eukaryotic genomes contain a large fraction of repetitive sequences that primarily originate from transpositional bursts of transposable elements (TEs). Repbase serves as a database for eukaryotic repetitive sequences and has now become the largest collection of eukaryotic TEs. During the development of Repbase, many new superfamilies/lineages of TEs, which include Helitron, Polinton, Ginger and SINEU, were reported. The unique composition of protein domains and DNA motifs in TEs sometimes indicates novel mechanisms of transposition, replication, anti-suppression or proliferation. In this review, our current understanding regarding the diversity of eukaryotic TEs in sequence, protein domain composition and structural hallmarks is introduced and summarized, based on the classification system implemented in Repbase. Autonomous eukaryotic TEs can be divided into two groups: Class I TEs, also called retrotransposons, and Class II TEs, or DNA transposons. Long terminal repeat (LTR) retrotransposons, including endogenous retroviruses, non-LTR retrotransposons, tyrosine recombinase retrotransposons and Penelope-like elements, are well accepted groups of autonomous retrotransposons. They share reverse transcriptase for replication but are distinct in the catalytic components responsible for integration into the host genome. Similarly, at least three transposition machineries have been reported in eukaryotic DNA transposons: DDD/E transposase, tyrosine recombinase and HUH endonuclease combined with helicase. Among these, TEs with DDD/E transposase are dominant and are classified into 21 superfamilies in Repbase. Non-autonomous TEs are either simple derivatives generated by internal deletion, or are composed of several units that originated independently. |
doi_str_mv | 10.1266/ggs.18-00024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2132249059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2349863962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c654t-40b9ec60628ae00529e45304dc967eecce27663281eaf26d3e6b9650f0a8b263</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxSNE1S9644wiceFAyvgjE_sIVSmVKnGgd8txJtssWWexE6T975l2263EZcbS_PTmzXNRvBdwKSTil9UqXwpTAYDUb4pTYQxUddPYt_xWWlRNjeakOMt5zQRYo46LEwVaoND2tLj-NaclzEvyY-ljV2b6s1AMVHbDX0p5mHfl1Je0_PZpN81DKOfkY95O2bcjlTTShuKc3xVHvR8zXTz38-L--_X91Y_q7ufN7dXXuypgredKQ2spIKA0ngBqaUnX7KULFhuiEEg2iEoaQb6X2CnC1mINPXjTSlTnxae97DZNbDPPbjPkQOPoI01LdlIoKbWF2jL68T90PS0psjknlbYGlUXJ1Oc9FdKUc6LebdOw4VOdAPeYruN0nTDuKV3GPzyLLu2GugP8EicDN3uAp0Pw4xTHIdLr6vCgWHDHHkBYFrUakJt0IJXiUrM3RICGlb7tldZ59is6rPKJP2GkJ19WO3wsL_4Ow_Dgk6Oo_gEO36LC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2349863962</pqid></control><display><type>article</type><title>Structural and sequence diversity of eukaryotic transposable elements</title><source>J-STAGE Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kojima, Kenji K.</creator><creatorcontrib>Kojima, Kenji K. ; Genetic Information Research Institute ; National Cheng Kung University ; Department of Life Sciences</creatorcontrib><description>The majority of eukaryotic genomes contain a large fraction of repetitive sequences that primarily originate from transpositional bursts of transposable elements (TEs). Repbase serves as a database for eukaryotic repetitive sequences and has now become the largest collection of eukaryotic TEs. During the development of Repbase, many new superfamilies/lineages of TEs, which include Helitron, Polinton, Ginger and SINEU, were reported. The unique composition of protein domains and DNA motifs in TEs sometimes indicates novel mechanisms of transposition, replication, anti-suppression or proliferation. In this review, our current understanding regarding the diversity of eukaryotic TEs in sequence, protein domain composition and structural hallmarks is introduced and summarized, based on the classification system implemented in Repbase. Autonomous eukaryotic TEs can be divided into two groups: Class I TEs, also called retrotransposons, and Class II TEs, or DNA transposons. Long terminal repeat (LTR) retrotransposons, including endogenous retroviruses, non-LTR retrotransposons, tyrosine recombinase retrotransposons and Penelope-like elements, are well accepted groups of autonomous retrotransposons. They share reverse transcriptase for replication but are distinct in the catalytic components responsible for integration into the host genome. Similarly, at least three transposition machineries have been reported in eukaryotic DNA transposons: DDD/E transposase, tyrosine recombinase and HUH endonuclease combined with helicase. Among these, TEs with DDD/E transposase are dominant and are classified into 21 superfamilies in Repbase. Non-autonomous TEs are either simple derivatives generated by internal deletion, or are composed of several units that originated independently.</description><identifier>ISSN: 1341-7568</identifier><identifier>EISSN: 1880-5779</identifier><identifier>DOI: 10.1266/ggs.18-00024</identifier><identifier>PMID: 30416149</identifier><language>eng</language><publisher>Japan: The Genetics Society of Japan</publisher><subject>Amino acid sequence ; Deoxyribonucleic acid ; DNA ; DNA helicase ; Endonuclease ; Genomes ; Long terminal repeat ; Protein composition ; Recombinase ; Repbase ; Replication ; retrotransposon ; reverse transcriptase ; RNA-directed DNA polymerase ; Transposase ; Transposition ; transposon ; Transposons ; Tyrosine</subject><ispartof>Genes & Genetic Systems, 2019/12/01, Vol.94(6), pp.233-252</ispartof><rights>2019 by The Genetics Society of Japan</rights><rights>Copyright Japan Science and Technology Agency 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c654t-40b9ec60628ae00529e45304dc967eecce27663281eaf26d3e6b9650f0a8b263</citedby><cites>FETCH-LOGICAL-c654t-40b9ec60628ae00529e45304dc967eecce27663281eaf26d3e6b9650f0a8b263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,1877,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30416149$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kojima, Kenji K.</creatorcontrib><creatorcontrib>Genetic Information Research Institute</creatorcontrib><creatorcontrib>National Cheng Kung University</creatorcontrib><creatorcontrib>Department of Life Sciences</creatorcontrib><title>Structural and sequence diversity of eukaryotic transposable elements</title><title>Genes & Genetic Systems</title><addtitle>Genes Genet. Syst.</addtitle><description>The majority of eukaryotic genomes contain a large fraction of repetitive sequences that primarily originate from transpositional bursts of transposable elements (TEs). Repbase serves as a database for eukaryotic repetitive sequences and has now become the largest collection of eukaryotic TEs. During the development of Repbase, many new superfamilies/lineages of TEs, which include Helitron, Polinton, Ginger and SINEU, were reported. The unique composition of protein domains and DNA motifs in TEs sometimes indicates novel mechanisms of transposition, replication, anti-suppression or proliferation. In this review, our current understanding regarding the diversity of eukaryotic TEs in sequence, protein domain composition and structural hallmarks is introduced and summarized, based on the classification system implemented in Repbase. Autonomous eukaryotic TEs can be divided into two groups: Class I TEs, also called retrotransposons, and Class II TEs, or DNA transposons. Long terminal repeat (LTR) retrotransposons, including endogenous retroviruses, non-LTR retrotransposons, tyrosine recombinase retrotransposons and Penelope-like elements, are well accepted groups of autonomous retrotransposons. They share reverse transcriptase for replication but are distinct in the catalytic components responsible for integration into the host genome. Similarly, at least three transposition machineries have been reported in eukaryotic DNA transposons: DDD/E transposase, tyrosine recombinase and HUH endonuclease combined with helicase. Among these, TEs with DDD/E transposase are dominant and are classified into 21 superfamilies in Repbase. Non-autonomous TEs are either simple derivatives generated by internal deletion, or are composed of several units that originated independently.</description><subject>Amino acid sequence</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA helicase</subject><subject>Endonuclease</subject><subject>Genomes</subject><subject>Long terminal repeat</subject><subject>Protein composition</subject><subject>Recombinase</subject><subject>Repbase</subject><subject>Replication</subject><subject>retrotransposon</subject><subject>reverse transcriptase</subject><subject>RNA-directed DNA polymerase</subject><subject>Transposase</subject><subject>Transposition</subject><subject>transposon</subject><subject>Transposons</subject><subject>Tyrosine</subject><issn>1341-7568</issn><issn>1880-5779</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkc1v1DAQxSNE1S9644wiceFAyvgjE_sIVSmVKnGgd8txJtssWWexE6T975l2263EZcbS_PTmzXNRvBdwKSTil9UqXwpTAYDUb4pTYQxUddPYt_xWWlRNjeakOMt5zQRYo46LEwVaoND2tLj-NaclzEvyY-ljV2b6s1AMVHbDX0p5mHfl1Je0_PZpN81DKOfkY95O2bcjlTTShuKc3xVHvR8zXTz38-L--_X91Y_q7ufN7dXXuypgredKQ2spIKA0ngBqaUnX7KULFhuiEEg2iEoaQb6X2CnC1mINPXjTSlTnxae97DZNbDPPbjPkQOPoI01LdlIoKbWF2jL68T90PS0psjknlbYGlUXJ1Oc9FdKUc6LebdOw4VOdAPeYruN0nTDuKV3GPzyLLu2GugP8EicDN3uAp0Pw4xTHIdLr6vCgWHDHHkBYFrUakJt0IJXiUrM3RICGlb7tldZ59is6rPKJP2GkJ19WO3wsL_4Ow_Dgk6Oo_gEO36LC</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Kojima, Kenji K.</creator><general>The Genetics Society of Japan</general><general>Japan Science and Technology Agency</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20191201</creationdate><title>Structural and sequence diversity of eukaryotic transposable elements</title><author>Kojima, Kenji K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c654t-40b9ec60628ae00529e45304dc967eecce27663281eaf26d3e6b9650f0a8b263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amino acid sequence</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA helicase</topic><topic>Endonuclease</topic><topic>Genomes</topic><topic>Long terminal repeat</topic><topic>Protein composition</topic><topic>Recombinase</topic><topic>Repbase</topic><topic>Replication</topic><topic>retrotransposon</topic><topic>reverse transcriptase</topic><topic>RNA-directed DNA polymerase</topic><topic>Transposase</topic><topic>Transposition</topic><topic>transposon</topic><topic>Transposons</topic><topic>Tyrosine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kojima, Kenji K.</creatorcontrib><creatorcontrib>Genetic Information Research Institute</creatorcontrib><creatorcontrib>National Cheng Kung University</creatorcontrib><creatorcontrib>Department of Life Sciences</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Genes & Genetic Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kojima, Kenji K.</au><aucorp>Genetic Information Research Institute</aucorp><aucorp>National Cheng Kung University</aucorp><aucorp>Department of Life Sciences</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and sequence diversity of eukaryotic transposable elements</atitle><jtitle>Genes & Genetic Systems</jtitle><addtitle>Genes Genet. Syst.</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>94</volume><issue>6</issue><spage>233</spage><epage>252</epage><pages>233-252</pages><issn>1341-7568</issn><eissn>1880-5779</eissn><abstract>The majority of eukaryotic genomes contain a large fraction of repetitive sequences that primarily originate from transpositional bursts of transposable elements (TEs). Repbase serves as a database for eukaryotic repetitive sequences and has now become the largest collection of eukaryotic TEs. During the development of Repbase, many new superfamilies/lineages of TEs, which include Helitron, Polinton, Ginger and SINEU, were reported. The unique composition of protein domains and DNA motifs in TEs sometimes indicates novel mechanisms of transposition, replication, anti-suppression or proliferation. In this review, our current understanding regarding the diversity of eukaryotic TEs in sequence, protein domain composition and structural hallmarks is introduced and summarized, based on the classification system implemented in Repbase. Autonomous eukaryotic TEs can be divided into two groups: Class I TEs, also called retrotransposons, and Class II TEs, or DNA transposons. Long terminal repeat (LTR) retrotransposons, including endogenous retroviruses, non-LTR retrotransposons, tyrosine recombinase retrotransposons and Penelope-like elements, are well accepted groups of autonomous retrotransposons. They share reverse transcriptase for replication but are distinct in the catalytic components responsible for integration into the host genome. Similarly, at least three transposition machineries have been reported in eukaryotic DNA transposons: DDD/E transposase, tyrosine recombinase and HUH endonuclease combined with helicase. Among these, TEs with DDD/E transposase are dominant and are classified into 21 superfamilies in Repbase. Non-autonomous TEs are either simple derivatives generated by internal deletion, or are composed of several units that originated independently.</abstract><cop>Japan</cop><pub>The Genetics Society of Japan</pub><pmid>30416149</pmid><doi>10.1266/ggs.18-00024</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1341-7568 |
ispartof | Genes & Genetic Systems, 2019/12/01, Vol.94(6), pp.233-252 |
issn | 1341-7568 1880-5779 |
language | eng |
recordid | cdi_proquest_miscellaneous_2132249059 |
source | J-STAGE Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Amino acid sequence Deoxyribonucleic acid DNA DNA helicase Endonuclease Genomes Long terminal repeat Protein composition Recombinase Repbase Replication retrotransposon reverse transcriptase RNA-directed DNA polymerase Transposase Transposition transposon Transposons Tyrosine |
title | Structural and sequence diversity of eukaryotic transposable elements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A26%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20sequence%20diversity%20of%20eukaryotic%20transposable%20elements&rft.jtitle=Genes%20&%20Genetic%20Systems&rft.au=Kojima,%20Kenji%20K.&rft.aucorp=Genetic%20Information%20Research%20Institute&rft.date=2019-12-01&rft.volume=94&rft.issue=6&rft.spage=233&rft.epage=252&rft.pages=233-252&rft.issn=1341-7568&rft.eissn=1880-5779&rft_id=info:doi/10.1266/ggs.18-00024&rft_dat=%3Cproquest_cross%3E2349863962%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2349863962&rft_id=info:pmid/30416149&rfr_iscdi=true |