Optimization of the parameters that affect the synthesis of magnetic copolymer styrene-divinilbezene to be used as efficient matrix for immobilizing lipases
The parameters that effect the synthesis of poly(styrene-co-divinylbenzene) magnetized with magnetite (STY-DVB-M) by polymerization emulsion were assessed in order to obtain magnetic beads to be used as matrix for lipase immobilization. The combined effect of polyvinyl alcohol (PVA) concentration an...
Gespeichert in:
Veröffentlicht in: | World journal of microbiology & biotechnology 2018-11, Vol.34 (11), p.169-12, Article 169 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 11 |
container_start_page | 169 |
container_title | World journal of microbiology & biotechnology |
container_volume | 34 |
creator | Silva, Mateus V. C. Aguiar, Leandro G. de Castro, Heizir F. Freitas, Larissa |
description | The parameters that effect the synthesis of poly(styrene-co-divinylbenzene) magnetized with magnetite (STY-DVB-M) by polymerization emulsion were assessed in order to obtain magnetic beads to be used as matrix for lipase immobilization. The combined effect of polyvinyl alcohol (PVA) concentration and agitation was studied using response surface methodology. A 2
2
full-factorial design was employed for experimental design and analysis of the results. The optimum PVA concentration and agitation were found to be 1 wt% and 400 rpm, respectively. These conditions allow attaining the best particle size distribution of the synthesized particles (80% between 80 and 24 mesh). The performance of the magnetic beads was tested as a matrix for immobilizing two microbial lipases (Lipases from
Burkholderia cepacia-
BCL and
Pseudomonas fluorescens-
AKL) by physical adsorption and high immobilization yields (> 70%) and hydrolytic activities (≅ 1850 U g
−1
) were attained. The properties of free and immobilized lipases were searched and compared. Similar performance regarding the analyzed parameters (biochemical properties, kinetic constants and thermal stability) were obtained. Moreover, both immobilized lipases were found to be able to catalyze the transesterification of coconut oil with ethanol to produce fatty acid ethyl esters (FAEE). Further study showed that the
B. cepacia
immobilized lipase could be used seven times without significant decrease of activity, revealing half-life time of 970 h.
Graphical abstract |
doi_str_mv | 10.1007/s11274-018-2553-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2131232073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2131232073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-1a3e4a524d606427348c6a38405b2d510fb9d317ab7a6bb31626bc4fd80e748d3</originalsourceid><addsrcrecordid>eNp1kcuKFDEUhoMoTjv6AG4kuHJTmltVqpYyjBcYmI2uQ1J10maoSsqclNj9LD6saXtUEFwdDuf7_wQ-Qp5z9pozpt8g50KrhvG-EW0rG_6A7HirZcMGLR6SHRvaoZHDIC_IE8Q7xmpqkI_JhWSKdW2nduTH7VrCEo62hBRp8rR8AbrabBcokLGutlDrPYzl1wkPsQ4MeGIXu49QwkjHtKb5sECmWA4ZIjRT-BZimB0c60ZLog7ohjBRixS8D2OAWGpByeE79SnTsCzJhTkcQ9zTOawWAZ-SR97OCM_u5yX5_O7609WH5ub2_certzfNKDUvDbcSlG2FmjrWKaGl6sfOyl6x1omp5cy7YZJcW6dt55zknejcqPzUM9Cqn-QleXXuXXP6ugEWswQcYZ5thLShEVxyIQXTsqIv_0Hv0pZj_Z0RQjA-iLarED9DY06IGbxZc1hsPhjOzMmcOZsz1Zw5mTO8Zl7cF29ugelP4reqCogzgPUU95D_vvz_1p-StaZy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222019256</pqid></control><display><type>article</type><title>Optimization of the parameters that affect the synthesis of magnetic copolymer styrene-divinilbezene to be used as efficient matrix for immobilizing lipases</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Silva, Mateus V. C. ; Aguiar, Leandro G. ; de Castro, Heizir F. ; Freitas, Larissa</creator><creatorcontrib>Silva, Mateus V. C. ; Aguiar, Leandro G. ; de Castro, Heizir F. ; Freitas, Larissa</creatorcontrib><description>The parameters that effect the synthesis of poly(styrene-co-divinylbenzene) magnetized with magnetite (STY-DVB-M) by polymerization emulsion were assessed in order to obtain magnetic beads to be used as matrix for lipase immobilization. The combined effect of polyvinyl alcohol (PVA) concentration and agitation was studied using response surface methodology. A 2
2
full-factorial design was employed for experimental design and analysis of the results. The optimum PVA concentration and agitation were found to be 1 wt% and 400 rpm, respectively. These conditions allow attaining the best particle size distribution of the synthesized particles (80% between 80 and 24 mesh). The performance of the magnetic beads was tested as a matrix for immobilizing two microbial lipases (Lipases from
Burkholderia cepacia-
BCL and
Pseudomonas fluorescens-
AKL) by physical adsorption and high immobilization yields (> 70%) and hydrolytic activities (≅ 1850 U g
−1
) were attained. The properties of free and immobilized lipases were searched and compared. Similar performance regarding the analyzed parameters (biochemical properties, kinetic constants and thermal stability) were obtained. Moreover, both immobilized lipases were found to be able to catalyze the transesterification of coconut oil with ethanol to produce fatty acid ethyl esters (FAEE). Further study showed that the
B. cepacia
immobilized lipase could be used seven times without significant decrease of activity, revealing half-life time of 970 h.
Graphical abstract</description><identifier>ISSN: 0959-3993</identifier><identifier>EISSN: 1573-0972</identifier><identifier>DOI: 10.1007/s11274-018-2553-1</identifier><identifier>PMID: 30406564</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adsorption ; Agitation ; Alcohols ; Applied Microbiology ; Beads ; Biocatalysis ; Biochemistry ; Biochemistry - methods ; Biomedical and Life Sciences ; Biotechnology ; Burkholderia ; Burkholderia cepacia - enzymology ; Chemical products ; Chemical synthesis ; Coconut oil ; Design of experiments ; Divinylbenzene ; Emergence Delirium ; Emulsion polymerization ; Environmental Engineering/Biotechnology ; Enzyme Stability ; Enzymes, Immobilized - chemistry ; Enzymes, Immobilized - metabolism ; Esterification ; Esters ; Ethanol ; Ethyl esters ; Experimental design ; Factorial design ; Hydrocarbons ; Hydrogen-Ion Concentration ; Immobilization ; Kinetics ; Life Sciences ; Lipase ; Lipase - chemistry ; Lipase - metabolism ; Magnetics - methods ; Magnetite ; Microbiology ; Microorganisms ; Oil ; Original Paper ; Parameters ; Particle Size ; Particle size distribution ; Pollutants ; Polymerization ; Polymers - chemistry ; Polymers - metabolism ; Polystyrene resins ; Polystyrenes - chemistry ; Polystyrenes - metabolism ; Polyvinyl Alcohol ; Pseudomonas fluorescens ; Pseudomonas fluorescens - enzymology ; Response surface methodology ; Size distribution ; Stability analysis ; Studies ; Styrene ; Styrenes ; Surfactants ; Temperature ; Thermal stability ; Transesterification</subject><ispartof>World journal of microbiology & biotechnology, 2018-11, Vol.34 (11), p.169-12, Article 169</ispartof><rights>Springer Nature B.V. 2018</rights><rights>World Journal of Microbiology and Biotechnology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-1a3e4a524d606427348c6a38405b2d510fb9d317ab7a6bb31626bc4fd80e748d3</citedby><cites>FETCH-LOGICAL-c371t-1a3e4a524d606427348c6a38405b2d510fb9d317ab7a6bb31626bc4fd80e748d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11274-018-2553-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11274-018-2553-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30406564$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Silva, Mateus V. C.</creatorcontrib><creatorcontrib>Aguiar, Leandro G.</creatorcontrib><creatorcontrib>de Castro, Heizir F.</creatorcontrib><creatorcontrib>Freitas, Larissa</creatorcontrib><title>Optimization of the parameters that affect the synthesis of magnetic copolymer styrene-divinilbezene to be used as efficient matrix for immobilizing lipases</title><title>World journal of microbiology & biotechnology</title><addtitle>World J Microbiol Biotechnol</addtitle><addtitle>World J Microbiol Biotechnol</addtitle><description>The parameters that effect the synthesis of poly(styrene-co-divinylbenzene) magnetized with magnetite (STY-DVB-M) by polymerization emulsion were assessed in order to obtain magnetic beads to be used as matrix for lipase immobilization. The combined effect of polyvinyl alcohol (PVA) concentration and agitation was studied using response surface methodology. A 2
2
full-factorial design was employed for experimental design and analysis of the results. The optimum PVA concentration and agitation were found to be 1 wt% and 400 rpm, respectively. These conditions allow attaining the best particle size distribution of the synthesized particles (80% between 80 and 24 mesh). The performance of the magnetic beads was tested as a matrix for immobilizing two microbial lipases (Lipases from
Burkholderia cepacia-
BCL and
Pseudomonas fluorescens-
AKL) by physical adsorption and high immobilization yields (> 70%) and hydrolytic activities (≅ 1850 U g
−1
) were attained. The properties of free and immobilized lipases were searched and compared. Similar performance regarding the analyzed parameters (biochemical properties, kinetic constants and thermal stability) were obtained. Moreover, both immobilized lipases were found to be able to catalyze the transesterification of coconut oil with ethanol to produce fatty acid ethyl esters (FAEE). Further study showed that the
B. cepacia
immobilized lipase could be used seven times without significant decrease of activity, revealing half-life time of 970 h.
Graphical abstract</description><subject>Adsorption</subject><subject>Agitation</subject><subject>Alcohols</subject><subject>Applied Microbiology</subject><subject>Beads</subject><subject>Biocatalysis</subject><subject>Biochemistry</subject><subject>Biochemistry - methods</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Burkholderia</subject><subject>Burkholderia cepacia - enzymology</subject><subject>Chemical products</subject><subject>Chemical synthesis</subject><subject>Coconut oil</subject><subject>Design of experiments</subject><subject>Divinylbenzene</subject><subject>Emergence Delirium</subject><subject>Emulsion polymerization</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Enzyme Stability</subject><subject>Enzymes, Immobilized - chemistry</subject><subject>Enzymes, Immobilized - metabolism</subject><subject>Esterification</subject><subject>Esters</subject><subject>Ethanol</subject><subject>Ethyl esters</subject><subject>Experimental design</subject><subject>Factorial design</subject><subject>Hydrocarbons</subject><subject>Hydrogen-Ion Concentration</subject><subject>Immobilization</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Lipase</subject><subject>Lipase - chemistry</subject><subject>Lipase - metabolism</subject><subject>Magnetics - methods</subject><subject>Magnetite</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Oil</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Particle Size</subject><subject>Particle size distribution</subject><subject>Pollutants</subject><subject>Polymerization</subject><subject>Polymers - chemistry</subject><subject>Polymers - metabolism</subject><subject>Polystyrene resins</subject><subject>Polystyrenes - chemistry</subject><subject>Polystyrenes - metabolism</subject><subject>Polyvinyl Alcohol</subject><subject>Pseudomonas fluorescens</subject><subject>Pseudomonas fluorescens - enzymology</subject><subject>Response surface methodology</subject><subject>Size distribution</subject><subject>Stability analysis</subject><subject>Studies</subject><subject>Styrene</subject><subject>Styrenes</subject><subject>Surfactants</subject><subject>Temperature</subject><subject>Thermal stability</subject><subject>Transesterification</subject><issn>0959-3993</issn><issn>1573-0972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kcuKFDEUhoMoTjv6AG4kuHJTmltVqpYyjBcYmI2uQ1J10maoSsqclNj9LD6saXtUEFwdDuf7_wQ-Qp5z9pozpt8g50KrhvG-EW0rG_6A7HirZcMGLR6SHRvaoZHDIC_IE8Q7xmpqkI_JhWSKdW2nduTH7VrCEo62hBRp8rR8AbrabBcokLGutlDrPYzl1wkPsQ4MeGIXu49QwkjHtKb5sECmWA4ZIjRT-BZimB0c60ZLog7ohjBRixS8D2OAWGpByeE79SnTsCzJhTkcQ9zTOawWAZ-SR97OCM_u5yX5_O7609WH5ub2_certzfNKDUvDbcSlG2FmjrWKaGl6sfOyl6x1omp5cy7YZJcW6dt55zknejcqPzUM9Cqn-QleXXuXXP6ugEWswQcYZ5thLShEVxyIQXTsqIv_0Hv0pZj_Z0RQjA-iLarED9DY06IGbxZc1hsPhjOzMmcOZsz1Zw5mTO8Zl7cF29ugelP4reqCogzgPUU95D_vvz_1p-StaZy</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Silva, Mateus V. C.</creator><creator>Aguiar, Leandro G.</creator><creator>de Castro, Heizir F.</creator><creator>Freitas, Larissa</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7U9</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20181101</creationdate><title>Optimization of the parameters that affect the synthesis of magnetic copolymer styrene-divinilbezene to be used as efficient matrix for immobilizing lipases</title><author>Silva, Mateus V. C. ; Aguiar, Leandro G. ; de Castro, Heizir F. ; Freitas, Larissa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-1a3e4a524d606427348c6a38405b2d510fb9d317ab7a6bb31626bc4fd80e748d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adsorption</topic><topic>Agitation</topic><topic>Alcohols</topic><topic>Applied Microbiology</topic><topic>Beads</topic><topic>Biocatalysis</topic><topic>Biochemistry</topic><topic>Biochemistry - methods</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Burkholderia</topic><topic>Burkholderia cepacia - enzymology</topic><topic>Chemical products</topic><topic>Chemical synthesis</topic><topic>Coconut oil</topic><topic>Design of experiments</topic><topic>Divinylbenzene</topic><topic>Emergence Delirium</topic><topic>Emulsion polymerization</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Enzyme Stability</topic><topic>Enzymes, Immobilized - chemistry</topic><topic>Enzymes, Immobilized - metabolism</topic><topic>Esterification</topic><topic>Esters</topic><topic>Ethanol</topic><topic>Ethyl esters</topic><topic>Experimental design</topic><topic>Factorial design</topic><topic>Hydrocarbons</topic><topic>Hydrogen-Ion Concentration</topic><topic>Immobilization</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Lipase</topic><topic>Lipase - chemistry</topic><topic>Lipase - metabolism</topic><topic>Magnetics - methods</topic><topic>Magnetite</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Oil</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Particle Size</topic><topic>Particle size distribution</topic><topic>Pollutants</topic><topic>Polymerization</topic><topic>Polymers - chemistry</topic><topic>Polymers - metabolism</topic><topic>Polystyrene resins</topic><topic>Polystyrenes - chemistry</topic><topic>Polystyrenes - metabolism</topic><topic>Polyvinyl Alcohol</topic><topic>Pseudomonas fluorescens</topic><topic>Pseudomonas fluorescens - enzymology</topic><topic>Response surface methodology</topic><topic>Size distribution</topic><topic>Stability analysis</topic><topic>Studies</topic><topic>Styrene</topic><topic>Styrenes</topic><topic>Surfactants</topic><topic>Temperature</topic><topic>Thermal stability</topic><topic>Transesterification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Mateus V. C.</creatorcontrib><creatorcontrib>Aguiar, Leandro G.</creatorcontrib><creatorcontrib>de Castro, Heizir F.</creatorcontrib><creatorcontrib>Freitas, Larissa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>World journal of microbiology & biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva, Mateus V. C.</au><au>Aguiar, Leandro G.</au><au>de Castro, Heizir F.</au><au>Freitas, Larissa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of the parameters that affect the synthesis of magnetic copolymer styrene-divinilbezene to be used as efficient matrix for immobilizing lipases</atitle><jtitle>World journal of microbiology & biotechnology</jtitle><stitle>World J Microbiol Biotechnol</stitle><addtitle>World J Microbiol Biotechnol</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>34</volume><issue>11</issue><spage>169</spage><epage>12</epage><pages>169-12</pages><artnum>169</artnum><issn>0959-3993</issn><eissn>1573-0972</eissn><abstract>The parameters that effect the synthesis of poly(styrene-co-divinylbenzene) magnetized with magnetite (STY-DVB-M) by polymerization emulsion were assessed in order to obtain magnetic beads to be used as matrix for lipase immobilization. The combined effect of polyvinyl alcohol (PVA) concentration and agitation was studied using response surface methodology. A 2
2
full-factorial design was employed for experimental design and analysis of the results. The optimum PVA concentration and agitation were found to be 1 wt% and 400 rpm, respectively. These conditions allow attaining the best particle size distribution of the synthesized particles (80% between 80 and 24 mesh). The performance of the magnetic beads was tested as a matrix for immobilizing two microbial lipases (Lipases from
Burkholderia cepacia-
BCL and
Pseudomonas fluorescens-
AKL) by physical adsorption and high immobilization yields (> 70%) and hydrolytic activities (≅ 1850 U g
−1
) were attained. The properties of free and immobilized lipases were searched and compared. Similar performance regarding the analyzed parameters (biochemical properties, kinetic constants and thermal stability) were obtained. Moreover, both immobilized lipases were found to be able to catalyze the transesterification of coconut oil with ethanol to produce fatty acid ethyl esters (FAEE). Further study showed that the
B. cepacia
immobilized lipase could be used seven times without significant decrease of activity, revealing half-life time of 970 h.
Graphical abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>30406564</pmid><doi>10.1007/s11274-018-2553-1</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0959-3993 |
ispartof | World journal of microbiology & biotechnology, 2018-11, Vol.34 (11), p.169-12, Article 169 |
issn | 0959-3993 1573-0972 |
language | eng |
recordid | cdi_proquest_miscellaneous_2131232073 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Adsorption Agitation Alcohols Applied Microbiology Beads Biocatalysis Biochemistry Biochemistry - methods Biomedical and Life Sciences Biotechnology Burkholderia Burkholderia cepacia - enzymology Chemical products Chemical synthesis Coconut oil Design of experiments Divinylbenzene Emergence Delirium Emulsion polymerization Environmental Engineering/Biotechnology Enzyme Stability Enzymes, Immobilized - chemistry Enzymes, Immobilized - metabolism Esterification Esters Ethanol Ethyl esters Experimental design Factorial design Hydrocarbons Hydrogen-Ion Concentration Immobilization Kinetics Life Sciences Lipase Lipase - chemistry Lipase - metabolism Magnetics - methods Magnetite Microbiology Microorganisms Oil Original Paper Parameters Particle Size Particle size distribution Pollutants Polymerization Polymers - chemistry Polymers - metabolism Polystyrene resins Polystyrenes - chemistry Polystyrenes - metabolism Polyvinyl Alcohol Pseudomonas fluorescens Pseudomonas fluorescens - enzymology Response surface methodology Size distribution Stability analysis Studies Styrene Styrenes Surfactants Temperature Thermal stability Transesterification |
title | Optimization of the parameters that affect the synthesis of magnetic copolymer styrene-divinilbezene to be used as efficient matrix for immobilizing lipases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A45%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20the%20parameters%20that%20affect%20the%20synthesis%20of%20magnetic%20copolymer%20styrene-divinilbezene%20to%20be%20used%20as%20efficient%20matrix%20for%20immobilizing%20lipases&rft.jtitle=World%20journal%20of%20microbiology%20&%20biotechnology&rft.au=Silva,%20Mateus%20V.%20C.&rft.date=2018-11-01&rft.volume=34&rft.issue=11&rft.spage=169&rft.epage=12&rft.pages=169-12&rft.artnum=169&rft.issn=0959-3993&rft.eissn=1573-0972&rft_id=info:doi/10.1007/s11274-018-2553-1&rft_dat=%3Cproquest_cross%3E2131232073%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222019256&rft_id=info:pmid/30406564&rfr_iscdi=true |