Transforming pathways unleashed by a HDAC2 mutation in human cancer

Although disruption of histone modification patterns is a common hallmark of human cancer, our knowledge of the mechanistic role of histone-modifying enzymes in its generation is very limited. We have recently identified an inactivating mutation in the histone deacetylase-2 (HDAC2) in sporadic carci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2008-06, Vol.27 (28), p.4008-4012
Hauptverfasser: Ropero, S, Ballestar, E, Alaminos, M, Arango, D, Schwartz, S, Esteller, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4012
container_issue 28
container_start_page 4008
container_title Oncogene
container_volume 27
creator Ropero, S
Ballestar, E
Alaminos, M
Arango, D
Schwartz, S
Esteller, M
description Although disruption of histone modification patterns is a common hallmark of human cancer, our knowledge of the mechanistic role of histone-modifying enzymes in its generation is very limited. We have recently identified an inactivating mutation in the histone deacetylase-2 (HDAC2) in sporadic carcinomas with microsatellite instability and in tumors arising in individuals with hereditary nonpolyposis colorectal cancer syndrome. Since HDAC2 seems to be a central player in epigenetic gene repression, we wondered whether HDAC2-truncating mutations conferred a particular expression signature on these cancer cells. Using unsupervised clustering analysis in microsatellite-unstable colorectal cancer cell lines, we have found that HDAC2 mutant cells (RKO and Co115) show a characteristically different expression microarray signature from HDAC2 wild-type cells (HCT-116, SW48, HCT-15 and LoVo). HDAC2 mutant cells exhibit upregulation of tumor-promoting genes, such as those of tyrosine kinases, mediators of cell cycle progression and angiogenic factors. The overexpression of these genes is associated with a loss of HDAC2 recruitment and a gain of histone H4 hyperacetylation in their particular 5′-end promoters, as observed by chromatin immunoprecipitation. Transfection of wild-type HDAC2 in mutant cells reverted this epigenetic pattern by repressing the transforming genes in association with HDAC2 promoter occupancy. These results suggest a role for HDAC2 mutations in human tumorigenesis through the derepression of key genes from multiple cellular transformation pathways.
doi_str_mv 10.1038/onc.2008.31
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_21310181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A190794616</galeid><sourcerecordid>A190794616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-c27344f05558df6e803dbb2bb0b46aa92befd9d3567b6f260bb5cd454aa1bee33</originalsourceid><addsrcrecordid>eNqF0c9rFDEUB_AgFrtWT951UPSis778mh_HZa2tUPBSz-Elk-xOmcmsyQyy_70ZZ2lBKpJDIPkkLy9fQl5RWFPg1efBmzUDqNacPiErKsoil7IWT8kKagl5zTg7J89jvAOAsgb2jJzTihWCcrEi29uAProh9K3fZQcc97_wGLPJdxbj3jaZPmaYXX_ZbFnWTyOO7eCz1mf7qUefGfTGhhfkzGEX7cvTfEF-fL283V7nN9-vvm03N7mRwMfcsJIL4UBKWTWusBXwRmumNWhRINZMW9fUDZdFqQvHCtBamkZIgUi1tZxfkA_LvYcw_JxsHFXfRmO7Dr0dpqgY5RRoRf8PoeZQyTLBd3_Bu2EKPjWh_nxQVYpyrvv2nyr1JDkrWULrBe2ws6r1bhgDmjQa27dm8Na1aX1D65SBKGiRDnxcDpgwxBisU4fQ9hiOioKag1UpWDUHq_jc0uvTGybd2-bBnpJM4P0JYDTYuRSraeO9YyCBAZ_f-WlxMW35nQ0PzTxe983CPY5TsPf3JTOTJH4DIl3BnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>227353272</pqid></control><display><type>article</type><title>Transforming pathways unleashed by a HDAC2 mutation in human cancer</title><source>MEDLINE</source><source>Nature</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Ropero, S ; Ballestar, E ; Alaminos, M ; Arango, D ; Schwartz, S ; Esteller, M</creator><creatorcontrib>Ropero, S ; Ballestar, E ; Alaminos, M ; Arango, D ; Schwartz, S ; Esteller, M</creatorcontrib><description>Although disruption of histone modification patterns is a common hallmark of human cancer, our knowledge of the mechanistic role of histone-modifying enzymes in its generation is very limited. We have recently identified an inactivating mutation in the histone deacetylase-2 (HDAC2) in sporadic carcinomas with microsatellite instability and in tumors arising in individuals with hereditary nonpolyposis colorectal cancer syndrome. Since HDAC2 seems to be a central player in epigenetic gene repression, we wondered whether HDAC2-truncating mutations conferred a particular expression signature on these cancer cells. Using unsupervised clustering analysis in microsatellite-unstable colorectal cancer cell lines, we have found that HDAC2 mutant cells (RKO and Co115) show a characteristically different expression microarray signature from HDAC2 wild-type cells (HCT-116, SW48, HCT-15 and LoVo). HDAC2 mutant cells exhibit upregulation of tumor-promoting genes, such as those of tyrosine kinases, mediators of cell cycle progression and angiogenic factors. The overexpression of these genes is associated with a loss of HDAC2 recruitment and a gain of histone H4 hyperacetylation in their particular 5′-end promoters, as observed by chromatin immunoprecipitation. Transfection of wild-type HDAC2 in mutant cells reverted this epigenetic pattern by repressing the transforming genes in association with HDAC2 promoter occupancy. These results suggest a role for HDAC2 mutations in human tumorigenesis through the derepression of key genes from multiple cellular transformation pathways.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/onc.2008.31</identifier><identifier>PMID: 18264134</identifier><identifier>CODEN: ONCNES</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Angiogenesis ; Apoptosis ; Biological and medical sciences ; Cancer ; Carcinoma ; Care and treatment ; Cell Biology ; Cell cycle ; Cell Line, Tumor ; Cell physiology ; Cell transformation ; Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes ; Chromatin ; Chromatin - metabolism ; Chromatin. Chromosome ; Cluster Analysis ; Colorectal cancer ; Colorectal carcinoma ; Derepression ; DNA microarrays ; Enzymes ; Epigenesis, Genetic ; Epigenetics ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Enzymologic ; Gene Expression Regulation, Neoplastic ; Gene mutations ; Genetic aspects ; Genetics ; HDAC2 protein ; Health aspects ; Histone deacetylase ; Histone Deacetylase 2 ; Histone Deacetylases - genetics ; Histone Deacetylases - physiology ; Histone H4 ; Histones - metabolism ; Human Genetics ; Humans ; Immunoprecipitation ; Internal Medicine ; Kinases ; Medicine ; Medicine &amp; Public Health ; Microsatellite instability ; Microsatellite Repeats ; Molecular and cellular biology ; Molecular genetics ; Mutants ; Mutation ; Neoplasms - metabolism ; Neovascularization, Pathologic ; Oncology ; Physiological aspects ; Promoter Regions, Genetic ; Repressor Proteins - genetics ; Repressor Proteins - physiology ; Risk factors ; short-communication ; Transcription Factors - metabolism ; Transfection ; Tumor cell lines ; Tumorigenesis ; Tyrosine</subject><ispartof>Oncogene, 2008-06, Vol.27 (28), p.4008-4012</ispartof><rights>Springer Nature Limited 2008</rights><rights>2008 INIST-CNRS</rights><rights>COPYRIGHT 2008 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jun 26, 2008</rights><rights>Nature Publishing Group 2008.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-c27344f05558df6e803dbb2bb0b46aa92befd9d3567b6f260bb5cd454aa1bee33</citedby><cites>FETCH-LOGICAL-c503t-c27344f05558df6e803dbb2bb0b46aa92befd9d3567b6f260bb5cd454aa1bee33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2727,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20502032$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18264134$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ropero, S</creatorcontrib><creatorcontrib>Ballestar, E</creatorcontrib><creatorcontrib>Alaminos, M</creatorcontrib><creatorcontrib>Arango, D</creatorcontrib><creatorcontrib>Schwartz, S</creatorcontrib><creatorcontrib>Esteller, M</creatorcontrib><title>Transforming pathways unleashed by a HDAC2 mutation in human cancer</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Although disruption of histone modification patterns is a common hallmark of human cancer, our knowledge of the mechanistic role of histone-modifying enzymes in its generation is very limited. We have recently identified an inactivating mutation in the histone deacetylase-2 (HDAC2) in sporadic carcinomas with microsatellite instability and in tumors arising in individuals with hereditary nonpolyposis colorectal cancer syndrome. Since HDAC2 seems to be a central player in epigenetic gene repression, we wondered whether HDAC2-truncating mutations conferred a particular expression signature on these cancer cells. Using unsupervised clustering analysis in microsatellite-unstable colorectal cancer cell lines, we have found that HDAC2 mutant cells (RKO and Co115) show a characteristically different expression microarray signature from HDAC2 wild-type cells (HCT-116, SW48, HCT-15 and LoVo). HDAC2 mutant cells exhibit upregulation of tumor-promoting genes, such as those of tyrosine kinases, mediators of cell cycle progression and angiogenic factors. The overexpression of these genes is associated with a loss of HDAC2 recruitment and a gain of histone H4 hyperacetylation in their particular 5′-end promoters, as observed by chromatin immunoprecipitation. Transfection of wild-type HDAC2 in mutant cells reverted this epigenetic pattern by repressing the transforming genes in association with HDAC2 promoter occupancy. These results suggest a role for HDAC2 mutations in human tumorigenesis through the derepression of key genes from multiple cellular transformation pathways.</description><subject>Angiogenesis</subject><subject>Apoptosis</subject><subject>Biological and medical sciences</subject><subject>Cancer</subject><subject>Carcinoma</subject><subject>Care and treatment</subject><subject>Cell Biology</subject><subject>Cell cycle</subject><subject>Cell Line, Tumor</subject><subject>Cell physiology</subject><subject>Cell transformation</subject><subject>Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes</subject><subject>Chromatin</subject><subject>Chromatin - metabolism</subject><subject>Chromatin. Chromosome</subject><subject>Cluster Analysis</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>Derepression</subject><subject>DNA microarrays</subject><subject>Enzymes</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Enzymologic</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Gene mutations</subject><subject>Genetic aspects</subject><subject>Genetics</subject><subject>HDAC2 protein</subject><subject>Health aspects</subject><subject>Histone deacetylase</subject><subject>Histone Deacetylase 2</subject><subject>Histone Deacetylases - genetics</subject><subject>Histone Deacetylases - physiology</subject><subject>Histone H4</subject><subject>Histones - metabolism</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Immunoprecipitation</subject><subject>Internal Medicine</subject><subject>Kinases</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Microsatellite instability</subject><subject>Microsatellite Repeats</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Neoplasms - metabolism</subject><subject>Neovascularization, Pathologic</subject><subject>Oncology</subject><subject>Physiological aspects</subject><subject>Promoter Regions, Genetic</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - physiology</subject><subject>Risk factors</subject><subject>short-communication</subject><subject>Transcription Factors - metabolism</subject><subject>Transfection</subject><subject>Tumor cell lines</subject><subject>Tumorigenesis</subject><subject>Tyrosine</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0c9rFDEUB_AgFrtWT951UPSis778mh_HZa2tUPBSz-Elk-xOmcmsyQyy_70ZZ2lBKpJDIPkkLy9fQl5RWFPg1efBmzUDqNacPiErKsoil7IWT8kKagl5zTg7J89jvAOAsgb2jJzTihWCcrEi29uAProh9K3fZQcc97_wGLPJdxbj3jaZPmaYXX_ZbFnWTyOO7eCz1mf7qUefGfTGhhfkzGEX7cvTfEF-fL283V7nN9-vvm03N7mRwMfcsJIL4UBKWTWusBXwRmumNWhRINZMW9fUDZdFqQvHCtBamkZIgUi1tZxfkA_LvYcw_JxsHFXfRmO7Dr0dpqgY5RRoRf8PoeZQyTLBd3_Bu2EKPjWh_nxQVYpyrvv2nyr1JDkrWULrBe2ws6r1bhgDmjQa27dm8Na1aX1D65SBKGiRDnxcDpgwxBisU4fQ9hiOioKag1UpWDUHq_jc0uvTGybd2-bBnpJM4P0JYDTYuRSraeO9YyCBAZ_f-WlxMW35nQ0PzTxe983CPY5TsPf3JTOTJH4DIl3BnQ</recordid><startdate>20080626</startdate><enddate>20080626</enddate><creator>Ropero, S</creator><creator>Ballestar, E</creator><creator>Alaminos, M</creator><creator>Arango, D</creator><creator>Schwartz, S</creator><creator>Esteller, M</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope></search><sort><creationdate>20080626</creationdate><title>Transforming pathways unleashed by a HDAC2 mutation in human cancer</title><author>Ropero, S ; Ballestar, E ; Alaminos, M ; Arango, D ; Schwartz, S ; Esteller, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-c27344f05558df6e803dbb2bb0b46aa92befd9d3567b6f260bb5cd454aa1bee33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Angiogenesis</topic><topic>Apoptosis</topic><topic>Biological and medical sciences</topic><topic>Cancer</topic><topic>Carcinoma</topic><topic>Care and treatment</topic><topic>Cell Biology</topic><topic>Cell cycle</topic><topic>Cell Line, Tumor</topic><topic>Cell physiology</topic><topic>Cell transformation</topic><topic>Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes</topic><topic>Chromatin</topic><topic>Chromatin - metabolism</topic><topic>Chromatin. Chromosome</topic><topic>Cluster Analysis</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>Derepression</topic><topic>DNA microarrays</topic><topic>Enzymes</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Enzymologic</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Gene mutations</topic><topic>Genetic aspects</topic><topic>Genetics</topic><topic>HDAC2 protein</topic><topic>Health aspects</topic><topic>Histone deacetylase</topic><topic>Histone Deacetylase 2</topic><topic>Histone Deacetylases - genetics</topic><topic>Histone Deacetylases - physiology</topic><topic>Histone H4</topic><topic>Histones - metabolism</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Immunoprecipitation</topic><topic>Internal Medicine</topic><topic>Kinases</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Microsatellite instability</topic><topic>Microsatellite Repeats</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Neoplasms - metabolism</topic><topic>Neovascularization, Pathologic</topic><topic>Oncology</topic><topic>Physiological aspects</topic><topic>Promoter Regions, Genetic</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - physiology</topic><topic>Risk factors</topic><topic>short-communication</topic><topic>Transcription Factors - metabolism</topic><topic>Transfection</topic><topic>Tumor cell lines</topic><topic>Tumorigenesis</topic><topic>Tyrosine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ropero, S</creatorcontrib><creatorcontrib>Ballestar, E</creatorcontrib><creatorcontrib>Alaminos, M</creatorcontrib><creatorcontrib>Arango, D</creatorcontrib><creatorcontrib>Schwartz, S</creatorcontrib><creatorcontrib>Esteller, M</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ropero, S</au><au>Ballestar, E</au><au>Alaminos, M</au><au>Arango, D</au><au>Schwartz, S</au><au>Esteller, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transforming pathways unleashed by a HDAC2 mutation in human cancer</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2008-06-26</date><risdate>2008</risdate><volume>27</volume><issue>28</issue><spage>4008</spage><epage>4012</epage><pages>4008-4012</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><coden>ONCNES</coden><abstract>Although disruption of histone modification patterns is a common hallmark of human cancer, our knowledge of the mechanistic role of histone-modifying enzymes in its generation is very limited. We have recently identified an inactivating mutation in the histone deacetylase-2 (HDAC2) in sporadic carcinomas with microsatellite instability and in tumors arising in individuals with hereditary nonpolyposis colorectal cancer syndrome. Since HDAC2 seems to be a central player in epigenetic gene repression, we wondered whether HDAC2-truncating mutations conferred a particular expression signature on these cancer cells. Using unsupervised clustering analysis in microsatellite-unstable colorectal cancer cell lines, we have found that HDAC2 mutant cells (RKO and Co115) show a characteristically different expression microarray signature from HDAC2 wild-type cells (HCT-116, SW48, HCT-15 and LoVo). HDAC2 mutant cells exhibit upregulation of tumor-promoting genes, such as those of tyrosine kinases, mediators of cell cycle progression and angiogenic factors. The overexpression of these genes is associated with a loss of HDAC2 recruitment and a gain of histone H4 hyperacetylation in their particular 5′-end promoters, as observed by chromatin immunoprecipitation. Transfection of wild-type HDAC2 in mutant cells reverted this epigenetic pattern by repressing the transforming genes in association with HDAC2 promoter occupancy. These results suggest a role for HDAC2 mutations in human tumorigenesis through the derepression of key genes from multiple cellular transformation pathways.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>18264134</pmid><doi>10.1038/onc.2008.31</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-9232
ispartof Oncogene, 2008-06, Vol.27 (28), p.4008-4012
issn 0950-9232
1476-5594
language eng
recordid cdi_proquest_miscellaneous_21310181
source MEDLINE; Nature; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Angiogenesis
Apoptosis
Biological and medical sciences
Cancer
Carcinoma
Care and treatment
Cell Biology
Cell cycle
Cell Line, Tumor
Cell physiology
Cell transformation
Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes
Chromatin
Chromatin - metabolism
Chromatin. Chromosome
Cluster Analysis
Colorectal cancer
Colorectal carcinoma
Derepression
DNA microarrays
Enzymes
Epigenesis, Genetic
Epigenetics
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Enzymologic
Gene Expression Regulation, Neoplastic
Gene mutations
Genetic aspects
Genetics
HDAC2 protein
Health aspects
Histone deacetylase
Histone Deacetylase 2
Histone Deacetylases - genetics
Histone Deacetylases - physiology
Histone H4
Histones - metabolism
Human Genetics
Humans
Immunoprecipitation
Internal Medicine
Kinases
Medicine
Medicine & Public Health
Microsatellite instability
Microsatellite Repeats
Molecular and cellular biology
Molecular genetics
Mutants
Mutation
Neoplasms - metabolism
Neovascularization, Pathologic
Oncology
Physiological aspects
Promoter Regions, Genetic
Repressor Proteins - genetics
Repressor Proteins - physiology
Risk factors
short-communication
Transcription Factors - metabolism
Transfection
Tumor cell lines
Tumorigenesis
Tyrosine
title Transforming pathways unleashed by a HDAC2 mutation in human cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A39%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transforming%20pathways%20unleashed%20by%20a%20HDAC2%20mutation%20in%20human%20cancer&rft.jtitle=Oncogene&rft.au=Ropero,%20S&rft.date=2008-06-26&rft.volume=27&rft.issue=28&rft.spage=4008&rft.epage=4012&rft.pages=4008-4012&rft.issn=0950-9232&rft.eissn=1476-5594&rft.coden=ONCNES&rft_id=info:doi/10.1038/onc.2008.31&rft_dat=%3Cgale_proqu%3EA190794616%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=227353272&rft_id=info:pmid/18264134&rft_galeid=A190794616&rfr_iscdi=true