The auxin influx carrier, OsAUX3, regulates rice root development and responses to aluminium stress

In rice, there are five members of the auxin carrier AUXIN1/LIKE AUX1 family; however, the biological functions of the other four members besides OsAUX1 remain unknown. Here, by using CRISPR/Cas9, we constructed two independent OsAUX3 knock‐down lines, osaux3‐1 and osaux3‐2, in wild‐type rice, Hwayo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant, cell and environment cell and environment, 2019-04, Vol.42 (4), p.1125-1138
Hauptverfasser: Wang, Mei, Qiao, JiYue, Yu, ChenLiang, Chen, Hao, Sun, ChenDong, Huang, LinZhou, Li, ChuanYou, Geisler, Markus, Qian, Qian, Jiang, De An, Qi, YanHua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In rice, there are five members of the auxin carrier AUXIN1/LIKE AUX1 family; however, the biological functions of the other four members besides OsAUX1 remain unknown. Here, by using CRISPR/Cas9, we constructed two independent OsAUX3 knock‐down lines, osaux3‐1 and osaux3‐2, in wild‐type rice, Hwayoung (WT/HY) and Dongjin (WT/DJ). osaux3‐1 and osaux3‐2 have shorter primary roots (PRs), decreased lateral root (LR) density, and longer root hairs (RHs) compared with their WT. OsAUX3 expression in PRs, LRs, and RHs further supports that OsAUX3 plays a critical role in the regulation of root development. OsAUX3 locates at the plasma membrane and functions as an auxin influx carrier affecting acropetal auxin transport. OsAUX3 is up‐regulated in the root apex under aluminium (Al) stress, and osaux3‐2 is insensitive to Al treatments. Furthermore, 1‐naphthylacetic acid accented the sensitivity of WT/DJ and osaux3‐2 to respond to Al stress. Auxin concentrations, Al contents, and Al‐induced reactive oxygen species‐mediated damage in osaux3‐2 under Al stress are lower than in WT, indicating that OsAUX3 is involved in Al‐induced inhibition of root growth. This study uncovers a novel pathway alleviating Al‐induced oxidative damage by inhibition of acropetal auxin transport and provides a new option for engineering Al‐tolerant rice species. This study reveals biological functions of OsAUX3. OsAUX3, an auxin influx carrier plays important roles in acropetal auxin transport, regulating PR growth, LR initiation and RH development, and response to Al stress. This study provides a new option for engineering Al‐tolerance rice species.
ISSN:0140-7791
1365-3040
DOI:10.1111/pce.13478