Anteroposterior molecular registries in ectoderm of the echinus rudiment
Background: Echinoderms and hemichordates are sister taxa that both have larvae with tripartite coeloms. Hemichordates inherit the coelom plan and ectoderm from larvae, whereas echinoderms form the adult rudiment comprising rearranged coeloms and a vestibule that then develops into adult oral ectode...
Gespeichert in:
Veröffentlicht in: | Developmental dynamics 2018-12, Vol.247 (12), p.1297-1307 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1307 |
---|---|
container_issue | 12 |
container_start_page | 1297 |
container_title | Developmental dynamics |
container_volume | 247 |
creator | Adachi, Shinya Niimi, Iyo Sakai, Yui Sato, Fuminori Minokawa, Takuya Urata, Makoto Sehara‐Fujisawa, Atsuko Kobayashi, Isao Yamaguchi, Masaaki |
description | Background: Echinoderms and hemichordates are sister taxa that both have larvae with tripartite coeloms. Hemichordates inherit the coelom plan and ectoderm from larvae, whereas echinoderms form the adult rudiment comprising rearranged coeloms and a vestibule that then develops into adult oral ectoderm. Molecular networks that control patterns of the ectoderm and the central nervous system along the anteroposterior (AP) axis are highly conserved between hemichordates and chordates, respectively. In echinoderms, however, little is known about the AP registry in the ectoderm. Results: We isolated ectodermal AP map genes from the sand dollar Peronella japonica and examined their expression. Comparative expression analyses showed that (1) P. japonica orthologs of hemichordate anterior markers are expressed in the larval apical plate, which degenerates during metamorphosis; (2) P. japonica orthologs of the medial markers are expressed in the ambulacral ectoderm of the rudiment; and (3) few P. japonica orthologs of the posterior markers are expressed in ectoderm. Conclusions: We suggest that echinoids only inherit the ambulacral ectoderm from a common ambulacrarian ancestor, which largely corresponds to the collar ectoderm in hemichordates. The ectodermal AP registry provides insights into the AP axis and evolutionary processes of echinoderms from a common ambulacrarian ancestor. Developmental Dynamics 247:1297–1307, 2018. © 2018 Wiley Periodicals, Inc.
Key Findings
Echinoid orthologs of hemichordate ectodermal anterior markers are expressed in the larval apical plate, which degenerates during metamorphosis.
Echinoid orthologs of hemichordate medial markers are expressed in adult ambulacral ectoderm, whereas few posterior marker orthologs are expressed in ectoderm.
Ectodermal anteroposterior registries indicate that echinoids only inherit the ambulacral ectoderm from a common ambulacrarian ancestor, which largely corresponds to the collar ectoderm in hemichordates.
We suggest that echinoderm rays are not duplicated AP axes of a common ambulacrarian ancestor but are outgrowths of appendages around the adult mouth. |
doi_str_mv | 10.1002/dvdy.24686 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2130059563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2130059563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4596-8e5fe8a016058326a40265819a5b325fef83b232b670df6936635e3c096fdb193</originalsourceid><addsrcrecordid>eNp90E1LwzAYB_AgipvTix9ACl5E6MxLkybHsakTBl5U8FT68tRltM1MWmXf3tRODx48PQnPjz8Pf4TOCZ4SjOlN8VHspjQSUhygMcEqDjGJ48P-zWUomZQjdOLcBmMsRUSO0YhhpiLB2RgtZ00L1myN80MbG9SmgryrUhtYeNOutRpcoJsA8tYUYOvAlEG7Bv9f66Zzge0KXUPTnqKjMq0cnO3nBD3f3T7Nl-Hq8f5hPluFecSVCCXwEmSKifC3MSrSCFPBJVEpzxj1u1KyjDKaiRgXpVBMCMaB5ViJssiIYhN0NeRurXnvwLVJrV0OVZU2YDqXUMIw5ooL5unlH7oxnW38db1SPI5iQb26HlRujXMWymRrdZ3aXUJw0veb9P0m3_16fLGP7LIail_6U6gHZACfuoLdP1HJ4mXxOoR-AYsghHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2139574762</pqid></control><display><type>article</type><title>Anteroposterior molecular registries in ectoderm of the echinus rudiment</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Adachi, Shinya ; Niimi, Iyo ; Sakai, Yui ; Sato, Fuminori ; Minokawa, Takuya ; Urata, Makoto ; Sehara‐Fujisawa, Atsuko ; Kobayashi, Isao ; Yamaguchi, Masaaki</creator><creatorcontrib>Adachi, Shinya ; Niimi, Iyo ; Sakai, Yui ; Sato, Fuminori ; Minokawa, Takuya ; Urata, Makoto ; Sehara‐Fujisawa, Atsuko ; Kobayashi, Isao ; Yamaguchi, Masaaki</creatorcontrib><description>Background: Echinoderms and hemichordates are sister taxa that both have larvae with tripartite coeloms. Hemichordates inherit the coelom plan and ectoderm from larvae, whereas echinoderms form the adult rudiment comprising rearranged coeloms and a vestibule that then develops into adult oral ectoderm. Molecular networks that control patterns of the ectoderm and the central nervous system along the anteroposterior (AP) axis are highly conserved between hemichordates and chordates, respectively. In echinoderms, however, little is known about the AP registry in the ectoderm. Results: We isolated ectodermal AP map genes from the sand dollar Peronella japonica and examined their expression. Comparative expression analyses showed that (1) P. japonica orthologs of hemichordate anterior markers are expressed in the larval apical plate, which degenerates during metamorphosis; (2) P. japonica orthologs of the medial markers are expressed in the ambulacral ectoderm of the rudiment; and (3) few P. japonica orthologs of the posterior markers are expressed in ectoderm. Conclusions: We suggest that echinoids only inherit the ambulacral ectoderm from a common ambulacrarian ancestor, which largely corresponds to the collar ectoderm in hemichordates. The ectodermal AP registry provides insights into the AP axis and evolutionary processes of echinoderms from a common ambulacrarian ancestor. Developmental Dynamics 247:1297–1307, 2018. © 2018 Wiley Periodicals, Inc.
Key Findings
Echinoid orthologs of hemichordate ectodermal anterior markers are expressed in the larval apical plate, which degenerates during metamorphosis.
Echinoid orthologs of hemichordate medial markers are expressed in adult ambulacral ectoderm, whereas few posterior marker orthologs are expressed in ectoderm.
Ectodermal anteroposterior registries indicate that echinoids only inherit the ambulacral ectoderm from a common ambulacrarian ancestor, which largely corresponds to the collar ectoderm in hemichordates.
We suggest that echinoderm rays are not duplicated AP axes of a common ambulacrarian ancestor but are outgrowths of appendages around the adult mouth.</description><identifier>ISSN: 1058-8388</identifier><identifier>EISSN: 1097-0177</identifier><identifier>DOI: 10.1002/dvdy.24686</identifier><identifier>PMID: 30394653</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Ambulacraria ; Animals ; AP axis ; Biological Evolution ; Body Patterning ; body plan ; Central nervous system ; Chordata - embryology ; Echinodermata ; Ectoderm ; Ectoderm - embryology ; Embryo, Nonmammalian ; Embryonic Development ; evolution ; Gene expression ; Hemichordata ; hemichordate ; Larva - cytology ; Larvae ; Markers ; Metamorphosis ; Metamorphosis, Biological ; sea urchin ; Sea Urchins ; Vestibules</subject><ispartof>Developmental dynamics, 2018-12, Vol.247 (12), p.1297-1307</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4596-8e5fe8a016058326a40265819a5b325fef83b232b670df6936635e3c096fdb193</citedby><cites>FETCH-LOGICAL-c4596-8e5fe8a016058326a40265819a5b325fef83b232b670df6936635e3c096fdb193</cites><orcidid>0000-0002-7077-6635</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fdvdy.24686$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fdvdy.24686$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30394653$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Adachi, Shinya</creatorcontrib><creatorcontrib>Niimi, Iyo</creatorcontrib><creatorcontrib>Sakai, Yui</creatorcontrib><creatorcontrib>Sato, Fuminori</creatorcontrib><creatorcontrib>Minokawa, Takuya</creatorcontrib><creatorcontrib>Urata, Makoto</creatorcontrib><creatorcontrib>Sehara‐Fujisawa, Atsuko</creatorcontrib><creatorcontrib>Kobayashi, Isao</creatorcontrib><creatorcontrib>Yamaguchi, Masaaki</creatorcontrib><title>Anteroposterior molecular registries in ectoderm of the echinus rudiment</title><title>Developmental dynamics</title><addtitle>Dev Dyn</addtitle><description>Background: Echinoderms and hemichordates are sister taxa that both have larvae with tripartite coeloms. Hemichordates inherit the coelom plan and ectoderm from larvae, whereas echinoderms form the adult rudiment comprising rearranged coeloms and a vestibule that then develops into adult oral ectoderm. Molecular networks that control patterns of the ectoderm and the central nervous system along the anteroposterior (AP) axis are highly conserved between hemichordates and chordates, respectively. In echinoderms, however, little is known about the AP registry in the ectoderm. Results: We isolated ectodermal AP map genes from the sand dollar Peronella japonica and examined their expression. Comparative expression analyses showed that (1) P. japonica orthologs of hemichordate anterior markers are expressed in the larval apical plate, which degenerates during metamorphosis; (2) P. japonica orthologs of the medial markers are expressed in the ambulacral ectoderm of the rudiment; and (3) few P. japonica orthologs of the posterior markers are expressed in ectoderm. Conclusions: We suggest that echinoids only inherit the ambulacral ectoderm from a common ambulacrarian ancestor, which largely corresponds to the collar ectoderm in hemichordates. The ectodermal AP registry provides insights into the AP axis and evolutionary processes of echinoderms from a common ambulacrarian ancestor. Developmental Dynamics 247:1297–1307, 2018. © 2018 Wiley Periodicals, Inc.
Key Findings
Echinoid orthologs of hemichordate ectodermal anterior markers are expressed in the larval apical plate, which degenerates during metamorphosis.
Echinoid orthologs of hemichordate medial markers are expressed in adult ambulacral ectoderm, whereas few posterior marker orthologs are expressed in ectoderm.
Ectodermal anteroposterior registries indicate that echinoids only inherit the ambulacral ectoderm from a common ambulacrarian ancestor, which largely corresponds to the collar ectoderm in hemichordates.
We suggest that echinoderm rays are not duplicated AP axes of a common ambulacrarian ancestor but are outgrowths of appendages around the adult mouth.</description><subject>Ambulacraria</subject><subject>Animals</subject><subject>AP axis</subject><subject>Biological Evolution</subject><subject>Body Patterning</subject><subject>body plan</subject><subject>Central nervous system</subject><subject>Chordata - embryology</subject><subject>Echinodermata</subject><subject>Ectoderm</subject><subject>Ectoderm - embryology</subject><subject>Embryo, Nonmammalian</subject><subject>Embryonic Development</subject><subject>evolution</subject><subject>Gene expression</subject><subject>Hemichordata</subject><subject>hemichordate</subject><subject>Larva - cytology</subject><subject>Larvae</subject><subject>Markers</subject><subject>Metamorphosis</subject><subject>Metamorphosis, Biological</subject><subject>sea urchin</subject><subject>Sea Urchins</subject><subject>Vestibules</subject><issn>1058-8388</issn><issn>1097-0177</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90E1LwzAYB_AgipvTix9ACl5E6MxLkybHsakTBl5U8FT68tRltM1MWmXf3tRODx48PQnPjz8Pf4TOCZ4SjOlN8VHspjQSUhygMcEqDjGJ48P-zWUomZQjdOLcBmMsRUSO0YhhpiLB2RgtZ00L1myN80MbG9SmgryrUhtYeNOutRpcoJsA8tYUYOvAlEG7Bv9f66Zzge0KXUPTnqKjMq0cnO3nBD3f3T7Nl-Hq8f5hPluFecSVCCXwEmSKifC3MSrSCFPBJVEpzxj1u1KyjDKaiRgXpVBMCMaB5ViJssiIYhN0NeRurXnvwLVJrV0OVZU2YDqXUMIw5ooL5unlH7oxnW38db1SPI5iQb26HlRujXMWymRrdZ3aXUJw0veb9P0m3_16fLGP7LIail_6U6gHZACfuoLdP1HJ4mXxOoR-AYsghHw</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Adachi, Shinya</creator><creator>Niimi, Iyo</creator><creator>Sakai, Yui</creator><creator>Sato, Fuminori</creator><creator>Minokawa, Takuya</creator><creator>Urata, Makoto</creator><creator>Sehara‐Fujisawa, Atsuko</creator><creator>Kobayashi, Isao</creator><creator>Yamaguchi, Masaaki</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7077-6635</orcidid></search><sort><creationdate>201812</creationdate><title>Anteroposterior molecular registries in ectoderm of the echinus rudiment</title><author>Adachi, Shinya ; Niimi, Iyo ; Sakai, Yui ; Sato, Fuminori ; Minokawa, Takuya ; Urata, Makoto ; Sehara‐Fujisawa, Atsuko ; Kobayashi, Isao ; Yamaguchi, Masaaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4596-8e5fe8a016058326a40265819a5b325fef83b232b670df6936635e3c096fdb193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Ambulacraria</topic><topic>Animals</topic><topic>AP axis</topic><topic>Biological Evolution</topic><topic>Body Patterning</topic><topic>body plan</topic><topic>Central nervous system</topic><topic>Chordata - embryology</topic><topic>Echinodermata</topic><topic>Ectoderm</topic><topic>Ectoderm - embryology</topic><topic>Embryo, Nonmammalian</topic><topic>Embryonic Development</topic><topic>evolution</topic><topic>Gene expression</topic><topic>Hemichordata</topic><topic>hemichordate</topic><topic>Larva - cytology</topic><topic>Larvae</topic><topic>Markers</topic><topic>Metamorphosis</topic><topic>Metamorphosis, Biological</topic><topic>sea urchin</topic><topic>Sea Urchins</topic><topic>Vestibules</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adachi, Shinya</creatorcontrib><creatorcontrib>Niimi, Iyo</creatorcontrib><creatorcontrib>Sakai, Yui</creatorcontrib><creatorcontrib>Sato, Fuminori</creatorcontrib><creatorcontrib>Minokawa, Takuya</creatorcontrib><creatorcontrib>Urata, Makoto</creatorcontrib><creatorcontrib>Sehara‐Fujisawa, Atsuko</creatorcontrib><creatorcontrib>Kobayashi, Isao</creatorcontrib><creatorcontrib>Yamaguchi, Masaaki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Developmental dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adachi, Shinya</au><au>Niimi, Iyo</au><au>Sakai, Yui</au><au>Sato, Fuminori</au><au>Minokawa, Takuya</au><au>Urata, Makoto</au><au>Sehara‐Fujisawa, Atsuko</au><au>Kobayashi, Isao</au><au>Yamaguchi, Masaaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anteroposterior molecular registries in ectoderm of the echinus rudiment</atitle><jtitle>Developmental dynamics</jtitle><addtitle>Dev Dyn</addtitle><date>2018-12</date><risdate>2018</risdate><volume>247</volume><issue>12</issue><spage>1297</spage><epage>1307</epage><pages>1297-1307</pages><issn>1058-8388</issn><eissn>1097-0177</eissn><abstract>Background: Echinoderms and hemichordates are sister taxa that both have larvae with tripartite coeloms. Hemichordates inherit the coelom plan and ectoderm from larvae, whereas echinoderms form the adult rudiment comprising rearranged coeloms and a vestibule that then develops into adult oral ectoderm. Molecular networks that control patterns of the ectoderm and the central nervous system along the anteroposterior (AP) axis are highly conserved between hemichordates and chordates, respectively. In echinoderms, however, little is known about the AP registry in the ectoderm. Results: We isolated ectodermal AP map genes from the sand dollar Peronella japonica and examined their expression. Comparative expression analyses showed that (1) P. japonica orthologs of hemichordate anterior markers are expressed in the larval apical plate, which degenerates during metamorphosis; (2) P. japonica orthologs of the medial markers are expressed in the ambulacral ectoderm of the rudiment; and (3) few P. japonica orthologs of the posterior markers are expressed in ectoderm. Conclusions: We suggest that echinoids only inherit the ambulacral ectoderm from a common ambulacrarian ancestor, which largely corresponds to the collar ectoderm in hemichordates. The ectodermal AP registry provides insights into the AP axis and evolutionary processes of echinoderms from a common ambulacrarian ancestor. Developmental Dynamics 247:1297–1307, 2018. © 2018 Wiley Periodicals, Inc.
Key Findings
Echinoid orthologs of hemichordate ectodermal anterior markers are expressed in the larval apical plate, which degenerates during metamorphosis.
Echinoid orthologs of hemichordate medial markers are expressed in adult ambulacral ectoderm, whereas few posterior marker orthologs are expressed in ectoderm.
Ectodermal anteroposterior registries indicate that echinoids only inherit the ambulacral ectoderm from a common ambulacrarian ancestor, which largely corresponds to the collar ectoderm in hemichordates.
We suggest that echinoderm rays are not duplicated AP axes of a common ambulacrarian ancestor but are outgrowths of appendages around the adult mouth.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30394653</pmid><doi>10.1002/dvdy.24686</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-7077-6635</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1058-8388 |
ispartof | Developmental dynamics, 2018-12, Vol.247 (12), p.1297-1307 |
issn | 1058-8388 1097-0177 |
language | eng |
recordid | cdi_proquest_miscellaneous_2130059563 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Ambulacraria Animals AP axis Biological Evolution Body Patterning body plan Central nervous system Chordata - embryology Echinodermata Ectoderm Ectoderm - embryology Embryo, Nonmammalian Embryonic Development evolution Gene expression Hemichordata hemichordate Larva - cytology Larvae Markers Metamorphosis Metamorphosis, Biological sea urchin Sea Urchins Vestibules |
title | Anteroposterior molecular registries in ectoderm of the echinus rudiment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T06%3A26%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anteroposterior%20molecular%20registries%20in%20ectoderm%20of%20the%20echinus%20rudiment&rft.jtitle=Developmental%20dynamics&rft.au=Adachi,%20Shinya&rft.date=2018-12&rft.volume=247&rft.issue=12&rft.spage=1297&rft.epage=1307&rft.pages=1297-1307&rft.issn=1058-8388&rft.eissn=1097-0177&rft_id=info:doi/10.1002/dvdy.24686&rft_dat=%3Cproquest_cross%3E2130059563%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2139574762&rft_id=info:pmid/30394653&rfr_iscdi=true |