Mixture Model Segmentation System for Parasagittal Meningioma brain Tumor Classification based on Hybrid Feature Vector
Meningioma is the one of the most common type of brain tumor, it as arises from the meninges and encloses the spine and the brain inside the skull. It accounts for 30% of all types of brain tumor. Meningioma’s can occur in many parts of the brain and accordingly it is named. In this paper, a mixture...
Gespeichert in:
Veröffentlicht in: | Journal of medical systems 2018-12, Vol.42 (12), p.251-6, Article 251 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | 12 |
container_start_page | 251 |
container_title | Journal of medical systems |
container_volume | 42 |
creator | Arokia Jesu Prabhu, L. Jayachandran, A. |
description | Meningioma is the one of the most common type of brain tumor, it as arises from the meninges and encloses the spine and the brain inside the skull. It accounts for 30% of all types of brain tumor. Meningioma’s can occur in many parts of the brain and accordingly it is named. In this paper, a mixture model based classification of meningioma brain tumor using MRI image is developed. The proposed method consists of four stages. In the first stage, with respect to the cells’ boundary, it is necessary to further processing, which ensures the boundary of some cells is a discrete region. Mathematical Morphology brings a fancy result during the discrete processing. Accurate cancer cell nucleus segmentation is necessary for automated cytological image analysis. Thresholding is a crucial step in segmentation..An adaptive binarization technique is an important step for medical image analysis.Finally, a novel hybrid Fuzzy SVM is designed in the classification stage meningioma brain tumor. The tumor classification results of proposed feature extraction with SVM is 74.24%, MM with FSVM is 82.67% and MM with RBF is 62.71% and our proposed method MM with Hybrid SVM is 91.64%. |
doi_str_mv | 10.1007/s10916-018-1094-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2130056423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2128987797</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-a7639bff6f26217261ccefb49a6289b24019a385c57325bfbcd47bc9b0c81ef3</originalsourceid><addsrcrecordid>eNp1kV1rFDEUhoModlv9Ad5IwBtvRvMxk0wuZbFW6KLQRbwLSeZkSZmZ1CRD3X9vtlMVBK9yIM9534QHoVeUvKOEyPeZEkVFQ2jf1Klt-BO0oZ3kjejV96doQ2jbN12n-jN0nvMtIUQJIZ-jM064YqRjG3S_Cz_LkgDv4gAjvoHDBHMxJcQZ3xxzgQn7mPBXk0w2h1CKGfEO5jAfQpwMtsmEGe-XqTLb0eQcfHDrtjUZBlyHq6NNYcCXYB6KvoErMb1Az7wZM7x8PC_Q_vLjfnvVXH_59Hn74bpxXLLSGCm4st4LzwSjkgnqHHjbKiNYryxrCVWG952rv2ad9dYNrbROWeJ6Cp5foLdr7F2KPxbIRU8hOxhHM0NcsmaUE9KJlvGKvvkHvY1LmuvjKlXLeimVrBRdKZdizgm8vkthMumoKdEnKXqVoqsUfZKiT8mvH5MXO8HwZ-O3hQqwFcj1aj5A-lv9_9RfF1aYdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2128987797</pqid></control><display><type>article</type><title>Mixture Model Segmentation System for Parasagittal Meningioma brain Tumor Classification based on Hybrid Feature Vector</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Arokia Jesu Prabhu, L. ; Jayachandran, A.</creator><creatorcontrib>Arokia Jesu Prabhu, L. ; Jayachandran, A.</creatorcontrib><description>Meningioma is the one of the most common type of brain tumor, it as arises from the meninges and encloses the spine and the brain inside the skull. It accounts for 30% of all types of brain tumor. Meningioma’s can occur in many parts of the brain and accordingly it is named. In this paper, a mixture model based classification of meningioma brain tumor using MRI image is developed. The proposed method consists of four stages. In the first stage, with respect to the cells’ boundary, it is necessary to further processing, which ensures the boundary of some cells is a discrete region. Mathematical Morphology brings a fancy result during the discrete processing. Accurate cancer cell nucleus segmentation is necessary for automated cytological image analysis. Thresholding is a crucial step in segmentation..An adaptive binarization technique is an important step for medical image analysis.Finally, a novel hybrid Fuzzy SVM is designed in the classification stage meningioma brain tumor. The tumor classification results of proposed feature extraction with SVM is 74.24%, MM with FSVM is 82.67% and MM with RBF is 62.71% and our proposed method MM with Hybrid SVM is 91.64%.</description><identifier>ISSN: 0148-5598</identifier><identifier>EISSN: 1573-689X</identifier><identifier>DOI: 10.1007/s10916-018-1094-3</identifier><identifier>PMID: 30392052</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Advancements in Internet of Medical Things for Healthcare System ; Brain ; Brain cancer ; Brain Neoplasms - diagnostic imaging ; Brain Neoplasms - pathology ; Brain tumors ; Cancer ; Classification ; Cytology ; Feature extraction ; Fuzzy Logic ; Health Informatics ; Health Sciences ; Humans ; Image & Signal Processing ; Image analysis ; Image classification ; Image processing ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Mathematical morphology ; Medical imaging ; Medicine ; Medicine & Public Health ; Meninges ; Meningioma ; Meningioma - diagnostic imaging ; Meningioma - pathology ; Neuroimaging ; Nuclei (cytology) ; Spine ; Statistics for Life Sciences ; Support Vector Machine ; Tumors</subject><ispartof>Journal of medical systems, 2018-12, Vol.42 (12), p.251-6, Article 251</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Journal of Medical Systems is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-a7639bff6f26217261ccefb49a6289b24019a385c57325bfbcd47bc9b0c81ef3</citedby><cites>FETCH-LOGICAL-c372t-a7639bff6f26217261ccefb49a6289b24019a385c57325bfbcd47bc9b0c81ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10916-018-1094-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10916-018-1094-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30392052$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arokia Jesu Prabhu, L.</creatorcontrib><creatorcontrib>Jayachandran, A.</creatorcontrib><title>Mixture Model Segmentation System for Parasagittal Meningioma brain Tumor Classification based on Hybrid Feature Vector</title><title>Journal of medical systems</title><addtitle>J Med Syst</addtitle><addtitle>J Med Syst</addtitle><description>Meningioma is the one of the most common type of brain tumor, it as arises from the meninges and encloses the spine and the brain inside the skull. It accounts for 30% of all types of brain tumor. Meningioma’s can occur in many parts of the brain and accordingly it is named. In this paper, a mixture model based classification of meningioma brain tumor using MRI image is developed. The proposed method consists of four stages. In the first stage, with respect to the cells’ boundary, it is necessary to further processing, which ensures the boundary of some cells is a discrete region. Mathematical Morphology brings a fancy result during the discrete processing. Accurate cancer cell nucleus segmentation is necessary for automated cytological image analysis. Thresholding is a crucial step in segmentation..An adaptive binarization technique is an important step for medical image analysis.Finally, a novel hybrid Fuzzy SVM is designed in the classification stage meningioma brain tumor. The tumor classification results of proposed feature extraction with SVM is 74.24%, MM with FSVM is 82.67% and MM with RBF is 62.71% and our proposed method MM with Hybrid SVM is 91.64%.</description><subject>Advancements in Internet of Medical Things for Healthcare System</subject><subject>Brain</subject><subject>Brain cancer</subject><subject>Brain Neoplasms - diagnostic imaging</subject><subject>Brain Neoplasms - pathology</subject><subject>Brain tumors</subject><subject>Cancer</subject><subject>Classification</subject><subject>Cytology</subject><subject>Feature extraction</subject><subject>Fuzzy Logic</subject><subject>Health Informatics</subject><subject>Health Sciences</subject><subject>Humans</subject><subject>Image & Signal Processing</subject><subject>Image analysis</subject><subject>Image classification</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Mathematical morphology</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Meninges</subject><subject>Meningioma</subject><subject>Meningioma - diagnostic imaging</subject><subject>Meningioma - pathology</subject><subject>Neuroimaging</subject><subject>Nuclei (cytology)</subject><subject>Spine</subject><subject>Statistics for Life Sciences</subject><subject>Support Vector Machine</subject><subject>Tumors</subject><issn>0148-5598</issn><issn>1573-689X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kV1rFDEUhoModlv9Ad5IwBtvRvMxk0wuZbFW6KLQRbwLSeZkSZmZ1CRD3X9vtlMVBK9yIM9534QHoVeUvKOEyPeZEkVFQ2jf1Klt-BO0oZ3kjejV96doQ2jbN12n-jN0nvMtIUQJIZ-jM064YqRjG3S_Cz_LkgDv4gAjvoHDBHMxJcQZ3xxzgQn7mPBXk0w2h1CKGfEO5jAfQpwMtsmEGe-XqTLb0eQcfHDrtjUZBlyHq6NNYcCXYB6KvoErMb1Az7wZM7x8PC_Q_vLjfnvVXH_59Hn74bpxXLLSGCm4st4LzwSjkgnqHHjbKiNYryxrCVWG952rv2ad9dYNrbROWeJ6Cp5foLdr7F2KPxbIRU8hOxhHM0NcsmaUE9KJlvGKvvkHvY1LmuvjKlXLeimVrBRdKZdizgm8vkthMumoKdEnKXqVoqsUfZKiT8mvH5MXO8HwZ-O3hQqwFcj1aj5A-lv9_9RfF1aYdA</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Arokia Jesu Prabhu, L.</creator><creator>Jayachandran, A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7RV</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20181201</creationdate><title>Mixture Model Segmentation System for Parasagittal Meningioma brain Tumor Classification based on Hybrid Feature Vector</title><author>Arokia Jesu Prabhu, L. ; Jayachandran, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-a7639bff6f26217261ccefb49a6289b24019a385c57325bfbcd47bc9b0c81ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Advancements in Internet of Medical Things for Healthcare System</topic><topic>Brain</topic><topic>Brain cancer</topic><topic>Brain Neoplasms - diagnostic imaging</topic><topic>Brain Neoplasms - pathology</topic><topic>Brain tumors</topic><topic>Cancer</topic><topic>Classification</topic><topic>Cytology</topic><topic>Feature extraction</topic><topic>Fuzzy Logic</topic><topic>Health Informatics</topic><topic>Health Sciences</topic><topic>Humans</topic><topic>Image & Signal Processing</topic><topic>Image analysis</topic><topic>Image classification</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Mathematical morphology</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Meninges</topic><topic>Meningioma</topic><topic>Meningioma - diagnostic imaging</topic><topic>Meningioma - pathology</topic><topic>Neuroimaging</topic><topic>Nuclei (cytology)</topic><topic>Spine</topic><topic>Statistics for Life Sciences</topic><topic>Support Vector Machine</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arokia Jesu Prabhu, L.</creatorcontrib><creatorcontrib>Jayachandran, A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of medical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arokia Jesu Prabhu, L.</au><au>Jayachandran, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixture Model Segmentation System for Parasagittal Meningioma brain Tumor Classification based on Hybrid Feature Vector</atitle><jtitle>Journal of medical systems</jtitle><stitle>J Med Syst</stitle><addtitle>J Med Syst</addtitle><date>2018-12-01</date><risdate>2018</risdate><volume>42</volume><issue>12</issue><spage>251</spage><epage>6</epage><pages>251-6</pages><artnum>251</artnum><issn>0148-5598</issn><eissn>1573-689X</eissn><abstract>Meningioma is the one of the most common type of brain tumor, it as arises from the meninges and encloses the spine and the brain inside the skull. It accounts for 30% of all types of brain tumor. Meningioma’s can occur in many parts of the brain and accordingly it is named. In this paper, a mixture model based classification of meningioma brain tumor using MRI image is developed. The proposed method consists of four stages. In the first stage, with respect to the cells’ boundary, it is necessary to further processing, which ensures the boundary of some cells is a discrete region. Mathematical Morphology brings a fancy result during the discrete processing. Accurate cancer cell nucleus segmentation is necessary for automated cytological image analysis. Thresholding is a crucial step in segmentation..An adaptive binarization technique is an important step for medical image analysis.Finally, a novel hybrid Fuzzy SVM is designed in the classification stage meningioma brain tumor. The tumor classification results of proposed feature extraction with SVM is 74.24%, MM with FSVM is 82.67% and MM with RBF is 62.71% and our proposed method MM with Hybrid SVM is 91.64%.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>30392052</pmid><doi>10.1007/s10916-018-1094-3</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-5598 |
ispartof | Journal of medical systems, 2018-12, Vol.42 (12), p.251-6, Article 251 |
issn | 0148-5598 1573-689X |
language | eng |
recordid | cdi_proquest_miscellaneous_2130056423 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Advancements in Internet of Medical Things for Healthcare System Brain Brain cancer Brain Neoplasms - diagnostic imaging Brain Neoplasms - pathology Brain tumors Cancer Classification Cytology Feature extraction Fuzzy Logic Health Informatics Health Sciences Humans Image & Signal Processing Image analysis Image classification Image processing Image Processing, Computer-Assisted - methods Image segmentation Magnetic resonance imaging Magnetic Resonance Imaging - methods Mathematical morphology Medical imaging Medicine Medicine & Public Health Meninges Meningioma Meningioma - diagnostic imaging Meningioma - pathology Neuroimaging Nuclei (cytology) Spine Statistics for Life Sciences Support Vector Machine Tumors |
title | Mixture Model Segmentation System for Parasagittal Meningioma brain Tumor Classification based on Hybrid Feature Vector |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A33%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixture%20Model%20Segmentation%20System%20for%20Parasagittal%20Meningioma%20brain%20Tumor%20Classification%20based%20on%20Hybrid%20Feature%20Vector&rft.jtitle=Journal%20of%20medical%20systems&rft.au=Arokia%20Jesu%20Prabhu,%20L.&rft.date=2018-12-01&rft.volume=42&rft.issue=12&rft.spage=251&rft.epage=6&rft.pages=251-6&rft.artnum=251&rft.issn=0148-5598&rft.eissn=1573-689X&rft_id=info:doi/10.1007/s10916-018-1094-3&rft_dat=%3Cproquest_cross%3E2128987797%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2128987797&rft_id=info:pmid/30392052&rfr_iscdi=true |