Shengmai San Alleviates Diabetic Cardiomyopathy Through Improvement of Mitochondrial Lipid Metabolic Disorder

Background/Aims: Shengmai San (SMS), prepared from Panax ginseng, Ophiopogon japonicus, and Schisandra chinensisin, has been widely used to treat ischemic disease. In this study, we investigated whether SMS may exert a beneficial effect in diabetic cardiomyopathy through improvement of mitochondrial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular physiology and biochemistry 2018-11, Vol.50 (5), p.1726-1739
Hauptverfasser: Tian, Jing, Tang, Wenzhu, Xu, Ming, Zhang, Chen, Zhao, Pei, Cao, Tongtong, Shan, Xiaoli, Lu, Rong, Guo, Wei 
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1739
container_issue 5
container_start_page 1726
container_title Cellular physiology and biochemistry
container_volume 50
creator Tian, Jing
Tang, Wenzhu
Xu, Ming
Zhang, Chen
Zhao, Pei
Cao, Tongtong
Shan, Xiaoli
Lu, Rong
Guo, Wei 
description Background/Aims: Shengmai San (SMS), prepared from Panax ginseng, Ophiopogon japonicus, and Schisandra chinensisin, has been widely used to treat ischemic disease. In this study, we investigated whether SMS may exert a beneficial effect in diabetic cardiomyopathy through improvement of mitochondrial lipid metabolism. Methods: A leptin receptor-deficient db/db mouse model was utilized, and lean age-matched C57BLKS mice served as non-diabetic controls. Glucose and lipid profiles, myocardial structure, dimension, and function, and heart weight to tibial length ratio were determined. Myocardial ultrastructural morphology was observed with transmission electron microscopy. Protein expression and activity of oxidative phosphorylation (OXPHOS) complex were assessed using western blotting and microplate assay kits. We also observed cellular viability, mitochondrial membrane potential, OXPHOS complex activity, and cellular ATP level in palmitic acid-stimulated H9C2 cardiomyocytes. Changes in the sirtuin (SIRT1)/AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) pathway and mitochondrial uncoupling signaling were assessed using western blotting and quantitative real-time PCR. Results: Leptin receptor-deficient db/db mice exhibit obesity, hyperglycemia, and hyperlipidemia, accompanied by distinct myocardial hypertrophy and diastolic dysfunction. SMS at a dose of 3 g/kg body weight contributed to a recovery of diabetes-induced myocardial hypertrophy and diastolic dysfunction. SMS administration led to an effective restoration of mitochondrial structure and function both in vivo and in vitro. Furthermore, SMS markedly enhanced SIRT1 and p-AMPKα protein levels and decreased the expression of acetylated-PGC-1α and uncoupling protein 2 protein. SMS also restored the depletion of NRF1 and TFAM levels in diabetic hearts and H9C2 cardiomyocytes. Conclusion: The results indicate that SMS may alleviate diabetes-induced myocardial hypertrophy and diastolic dysfunction by improving mitochondrial lipid metabolism.
doi_str_mv 10.1159/000494791
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2129537446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_bdcf2794c63f425badf67743cddeebfb</doaj_id><sourcerecordid>2129537446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-cc029d07618a8a9b113e01e6f635f42661ccfc131ecfe0ef7d481c3fcb7d8f8b3</originalsourceid><addsrcrecordid>eNpdkUtv1DAURiMEoqWwYI-QpW5gEbBjx49lNeUx0lQsWtaWY19PPCTxYCeV5t_jMsMsWPnaOvfIn76qekvwJ0Ja9RljzBQTijyrLglrSK2EkM_LjElbSyXFRfUq5x0uV6Gal9UFxVQyyvllNd73MG1HE9C9mdDNMMBjMDNkdBtMB3OwaGWSC3E8xL2Z-wN66FNctj1aj_sUH2GEaUbRo7swR9vHyaVgBrQJ--DQHcymi0Nx3IYck4P0unrhzZDhzem8qn5-_fKw-l5vfnxbr242tWW0nWtrcaMcFpxII43qCKGACXDPaetZwzmx1ltCCVgPGLxwTBJLve2Ek1529KpaH70ump3epzCadNDRBP33IaatNqmEG0B3zvpGKGY5Leq2M85zIRi1zgF0_sn14egqeX8vkGc9hmxhGMwEccm6IY1qqWCMF_T6P3QXlzSVpLqhmMjSUasK9fFI2RRzTuDPHyRYP_Wpz30W9v3JuHQjuDP5r8ACvDsCv0zaQjoDp_0_0cOlBQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2301894759</pqid></control><display><type>article</type><title>Shengmai San Alleviates Diabetic Cardiomyopathy Through Improvement of Mitochondrial Lipid Metabolic Disorder</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Karger Open Access</source><creator>Tian, Jing ; Tang, Wenzhu ; Xu, Ming ; Zhang, Chen ; Zhao, Pei ; Cao, Tongtong ; Shan, Xiaoli ; Lu, Rong ; Guo, Wei </creator><creatorcontrib>Tian, Jing ; Tang, Wenzhu ; Xu, Ming ; Zhang, Chen ; Zhao, Pei ; Cao, Tongtong ; Shan, Xiaoli ; Lu, Rong ; Guo, Wei </creatorcontrib><description>Background/Aims: Shengmai San (SMS), prepared from Panax ginseng, Ophiopogon japonicus, and Schisandra chinensisin, has been widely used to treat ischemic disease. In this study, we investigated whether SMS may exert a beneficial effect in diabetic cardiomyopathy through improvement of mitochondrial lipid metabolism. Methods: A leptin receptor-deficient db/db mouse model was utilized, and lean age-matched C57BLKS mice served as non-diabetic controls. Glucose and lipid profiles, myocardial structure, dimension, and function, and heart weight to tibial length ratio were determined. Myocardial ultrastructural morphology was observed with transmission electron microscopy. Protein expression and activity of oxidative phosphorylation (OXPHOS) complex were assessed using western blotting and microplate assay kits. We also observed cellular viability, mitochondrial membrane potential, OXPHOS complex activity, and cellular ATP level in palmitic acid-stimulated H9C2 cardiomyocytes. Changes in the sirtuin (SIRT1)/AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) pathway and mitochondrial uncoupling signaling were assessed using western blotting and quantitative real-time PCR. Results: Leptin receptor-deficient db/db mice exhibit obesity, hyperglycemia, and hyperlipidemia, accompanied by distinct myocardial hypertrophy and diastolic dysfunction. SMS at a dose of 3 g/kg body weight contributed to a recovery of diabetes-induced myocardial hypertrophy and diastolic dysfunction. SMS administration led to an effective restoration of mitochondrial structure and function both in vivo and in vitro. Furthermore, SMS markedly enhanced SIRT1 and p-AMPKα protein levels and decreased the expression of acetylated-PGC-1α and uncoupling protein 2 protein. SMS also restored the depletion of NRF1 and TFAM levels in diabetic hearts and H9C2 cardiomyocytes. Conclusion: The results indicate that SMS may alleviate diabetes-induced myocardial hypertrophy and diastolic dysfunction by improving mitochondrial lipid metabolism.</description><identifier>ISSN: 1015-8987</identifier><identifier>EISSN: 1421-9778</identifier><identifier>DOI: 10.1159/000494791</identifier><identifier>PMID: 30384366</identifier><language>eng</language><publisher>Basel, Switzerland: S. Karger AG</publisher><subject>AMP-Activated Protein Kinases - metabolism ; Animals ; Cardiomyopathy ; Diabetes ; Diabetes Mellitus, Type 2 - complications ; Diabetes Mellitus, Type 2 - pathology ; Diabetes Mellitus, Type 2 - veterinary ; Diabetic Cardiomyopathies - drug therapy ; Diabetic Cardiomyopathies - etiology ; Diabetic Cardiomyopathies - pathology ; Diabetic cardiomyopathy ; Diet ; Drugs, Chinese Herbal - pharmacology ; Drugs, Chinese Herbal - therapeutic use ; Fatty acids ; Glucose ; Heart ; Homeostasis ; Lipids ; Male ; Metabolic disorders ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Myocardium - metabolism ; Myocardium - pathology ; Myocytes, Cardiac - cytology ; Myocytes, Cardiac - drug effects ; Myocytes, Cardiac - metabolism ; Nuclear Respiratory Factor 1 - metabolism ; Obesity ; Original Paper ; Oxidative Phosphorylation - drug effects ; Oxidative stress ; Palmitic Acid - pharmacology ; Peroxisome proliferator-activated receptor gamma coactivator 1-alpha ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism ; Phosphorylation ; Proteins ; Receptors, Leptin - deficiency ; Receptors, Leptin - genetics ; Shengmai San ; Signal Transduction - drug effects ; Sirtuin 1 - metabolism ; Uncoupling Protein 2 - metabolism</subject><ispartof>Cellular physiology and biochemistry, 2018-11, Vol.50 (5), p.1726-1739</ispartof><rights>2018 The Author(s). Published by S. Karger AG, Basel</rights><rights>2018 The Author(s). Published by S. Karger AG, Basel.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-cc029d07618a8a9b113e01e6f635f42661ccfc131ecfe0ef7d481c3fcb7d8f8b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,27612,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30384366$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tian, Jing</creatorcontrib><creatorcontrib>Tang, Wenzhu</creatorcontrib><creatorcontrib>Xu, Ming</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Zhao, Pei</creatorcontrib><creatorcontrib>Cao, Tongtong</creatorcontrib><creatorcontrib>Shan, Xiaoli</creatorcontrib><creatorcontrib>Lu, Rong</creatorcontrib><creatorcontrib>Guo, Wei </creatorcontrib><title>Shengmai San Alleviates Diabetic Cardiomyopathy Through Improvement of Mitochondrial Lipid Metabolic Disorder</title><title>Cellular physiology and biochemistry</title><addtitle>Cell Physiol Biochem</addtitle><description>Background/Aims: Shengmai San (SMS), prepared from Panax ginseng, Ophiopogon japonicus, and Schisandra chinensisin, has been widely used to treat ischemic disease. In this study, we investigated whether SMS may exert a beneficial effect in diabetic cardiomyopathy through improvement of mitochondrial lipid metabolism. Methods: A leptin receptor-deficient db/db mouse model was utilized, and lean age-matched C57BLKS mice served as non-diabetic controls. Glucose and lipid profiles, myocardial structure, dimension, and function, and heart weight to tibial length ratio were determined. Myocardial ultrastructural morphology was observed with transmission electron microscopy. Protein expression and activity of oxidative phosphorylation (OXPHOS) complex were assessed using western blotting and microplate assay kits. We also observed cellular viability, mitochondrial membrane potential, OXPHOS complex activity, and cellular ATP level in palmitic acid-stimulated H9C2 cardiomyocytes. Changes in the sirtuin (SIRT1)/AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) pathway and mitochondrial uncoupling signaling were assessed using western blotting and quantitative real-time PCR. Results: Leptin receptor-deficient db/db mice exhibit obesity, hyperglycemia, and hyperlipidemia, accompanied by distinct myocardial hypertrophy and diastolic dysfunction. SMS at a dose of 3 g/kg body weight contributed to a recovery of diabetes-induced myocardial hypertrophy and diastolic dysfunction. SMS administration led to an effective restoration of mitochondrial structure and function both in vivo and in vitro. Furthermore, SMS markedly enhanced SIRT1 and p-AMPKα protein levels and decreased the expression of acetylated-PGC-1α and uncoupling protein 2 protein. SMS also restored the depletion of NRF1 and TFAM levels in diabetic hearts and H9C2 cardiomyocytes. Conclusion: The results indicate that SMS may alleviate diabetes-induced myocardial hypertrophy and diastolic dysfunction by improving mitochondrial lipid metabolism.</description><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>Animals</subject><subject>Cardiomyopathy</subject><subject>Diabetes</subject><subject>Diabetes Mellitus, Type 2 - complications</subject><subject>Diabetes Mellitus, Type 2 - pathology</subject><subject>Diabetes Mellitus, Type 2 - veterinary</subject><subject>Diabetic Cardiomyopathies - drug therapy</subject><subject>Diabetic Cardiomyopathies - etiology</subject><subject>Diabetic Cardiomyopathies - pathology</subject><subject>Diabetic cardiomyopathy</subject><subject>Diet</subject><subject>Drugs, Chinese Herbal - pharmacology</subject><subject>Drugs, Chinese Herbal - therapeutic use</subject><subject>Fatty acids</subject><subject>Glucose</subject><subject>Heart</subject><subject>Homeostasis</subject><subject>Lipids</subject><subject>Male</subject><subject>Metabolic disorders</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Myocardium - metabolism</subject><subject>Myocardium - pathology</subject><subject>Myocytes, Cardiac - cytology</subject><subject>Myocytes, Cardiac - drug effects</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Nuclear Respiratory Factor 1 - metabolism</subject><subject>Obesity</subject><subject>Original Paper</subject><subject>Oxidative Phosphorylation - drug effects</subject><subject>Oxidative stress</subject><subject>Palmitic Acid - pharmacology</subject><subject>Peroxisome proliferator-activated receptor gamma coactivator 1-alpha</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>Receptors, Leptin - deficiency</subject><subject>Receptors, Leptin - genetics</subject><subject>Shengmai San</subject><subject>Signal Transduction - drug effects</subject><subject>Sirtuin 1 - metabolism</subject><subject>Uncoupling Protein 2 - metabolism</subject><issn>1015-8987</issn><issn>1421-9778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>M--</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNpdkUtv1DAURiMEoqWwYI-QpW5gEbBjx49lNeUx0lQsWtaWY19PPCTxYCeV5t_jMsMsWPnaOvfIn76qekvwJ0Ja9RljzBQTijyrLglrSK2EkM_LjElbSyXFRfUq5x0uV6Gal9UFxVQyyvllNd73MG1HE9C9mdDNMMBjMDNkdBtMB3OwaGWSC3E8xL2Z-wN66FNctj1aj_sUH2GEaUbRo7swR9vHyaVgBrQJ--DQHcymi0Nx3IYck4P0unrhzZDhzem8qn5-_fKw-l5vfnxbr242tWW0nWtrcaMcFpxII43qCKGACXDPaetZwzmx1ltCCVgPGLxwTBJLve2Ek1529KpaH70ump3epzCadNDRBP33IaatNqmEG0B3zvpGKGY5Leq2M85zIRi1zgF0_sn14egqeX8vkGc9hmxhGMwEccm6IY1qqWCMF_T6P3QXlzSVpLqhmMjSUasK9fFI2RRzTuDPHyRYP_Wpz30W9v3JuHQjuDP5r8ACvDsCv0zaQjoDp_0_0cOlBQ</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Tian, Jing</creator><creator>Tang, Wenzhu</creator><creator>Xu, Ming</creator><creator>Zhang, Chen</creator><creator>Zhao, Pei</creator><creator>Cao, Tongtong</creator><creator>Shan, Xiaoli</creator><creator>Lu, Rong</creator><creator>Guo, Wei </creator><general>S. Karger AG</general><general>Cell Physiol Biochem Press GmbH &amp; Co KG</general><scope>M--</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>DOA</scope></search><sort><creationdate>20181101</creationdate><title>Shengmai San Alleviates Diabetic Cardiomyopathy Through Improvement of Mitochondrial Lipid Metabolic Disorder</title><author>Tian, Jing ; Tang, Wenzhu ; Xu, Ming ; Zhang, Chen ; Zhao, Pei ; Cao, Tongtong ; Shan, Xiaoli ; Lu, Rong ; Guo, Wei </author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-cc029d07618a8a9b113e01e6f635f42661ccfc131ecfe0ef7d481c3fcb7d8f8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>Animals</topic><topic>Cardiomyopathy</topic><topic>Diabetes</topic><topic>Diabetes Mellitus, Type 2 - complications</topic><topic>Diabetes Mellitus, Type 2 - pathology</topic><topic>Diabetes Mellitus, Type 2 - veterinary</topic><topic>Diabetic Cardiomyopathies - drug therapy</topic><topic>Diabetic Cardiomyopathies - etiology</topic><topic>Diabetic Cardiomyopathies - pathology</topic><topic>Diabetic cardiomyopathy</topic><topic>Diet</topic><topic>Drugs, Chinese Herbal - pharmacology</topic><topic>Drugs, Chinese Herbal - therapeutic use</topic><topic>Fatty acids</topic><topic>Glucose</topic><topic>Heart</topic><topic>Homeostasis</topic><topic>Lipids</topic><topic>Male</topic><topic>Metabolic disorders</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Myocardium - metabolism</topic><topic>Myocardium - pathology</topic><topic>Myocytes, Cardiac - cytology</topic><topic>Myocytes, Cardiac - drug effects</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Nuclear Respiratory Factor 1 - metabolism</topic><topic>Obesity</topic><topic>Original Paper</topic><topic>Oxidative Phosphorylation - drug effects</topic><topic>Oxidative stress</topic><topic>Palmitic Acid - pharmacology</topic><topic>Peroxisome proliferator-activated receptor gamma coactivator 1-alpha</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>Receptors, Leptin - deficiency</topic><topic>Receptors, Leptin - genetics</topic><topic>Shengmai San</topic><topic>Signal Transduction - drug effects</topic><topic>Sirtuin 1 - metabolism</topic><topic>Uncoupling Protein 2 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Jing</creatorcontrib><creatorcontrib>Tang, Wenzhu</creatorcontrib><creatorcontrib>Xu, Ming</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Zhao, Pei</creatorcontrib><creatorcontrib>Cao, Tongtong</creatorcontrib><creatorcontrib>Shan, Xiaoli</creatorcontrib><creatorcontrib>Lu, Rong</creatorcontrib><creatorcontrib>Guo, Wei </creatorcontrib><collection>Karger Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cellular physiology and biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Jing</au><au>Tang, Wenzhu</au><au>Xu, Ming</au><au>Zhang, Chen</au><au>Zhao, Pei</au><au>Cao, Tongtong</au><au>Shan, Xiaoli</au><au>Lu, Rong</au><au>Guo, Wei </au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shengmai San Alleviates Diabetic Cardiomyopathy Through Improvement of Mitochondrial Lipid Metabolic Disorder</atitle><jtitle>Cellular physiology and biochemistry</jtitle><addtitle>Cell Physiol Biochem</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>50</volume><issue>5</issue><spage>1726</spage><epage>1739</epage><pages>1726-1739</pages><issn>1015-8987</issn><eissn>1421-9778</eissn><abstract>Background/Aims: Shengmai San (SMS), prepared from Panax ginseng, Ophiopogon japonicus, and Schisandra chinensisin, has been widely used to treat ischemic disease. In this study, we investigated whether SMS may exert a beneficial effect in diabetic cardiomyopathy through improvement of mitochondrial lipid metabolism. Methods: A leptin receptor-deficient db/db mouse model was utilized, and lean age-matched C57BLKS mice served as non-diabetic controls. Glucose and lipid profiles, myocardial structure, dimension, and function, and heart weight to tibial length ratio were determined. Myocardial ultrastructural morphology was observed with transmission electron microscopy. Protein expression and activity of oxidative phosphorylation (OXPHOS) complex were assessed using western blotting and microplate assay kits. We also observed cellular viability, mitochondrial membrane potential, OXPHOS complex activity, and cellular ATP level in palmitic acid-stimulated H9C2 cardiomyocytes. Changes in the sirtuin (SIRT1)/AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) pathway and mitochondrial uncoupling signaling were assessed using western blotting and quantitative real-time PCR. Results: Leptin receptor-deficient db/db mice exhibit obesity, hyperglycemia, and hyperlipidemia, accompanied by distinct myocardial hypertrophy and diastolic dysfunction. SMS at a dose of 3 g/kg body weight contributed to a recovery of diabetes-induced myocardial hypertrophy and diastolic dysfunction. SMS administration led to an effective restoration of mitochondrial structure and function both in vivo and in vitro. Furthermore, SMS markedly enhanced SIRT1 and p-AMPKα protein levels and decreased the expression of acetylated-PGC-1α and uncoupling protein 2 protein. SMS also restored the depletion of NRF1 and TFAM levels in diabetic hearts and H9C2 cardiomyocytes. Conclusion: The results indicate that SMS may alleviate diabetes-induced myocardial hypertrophy and diastolic dysfunction by improving mitochondrial lipid metabolism.</abstract><cop>Basel, Switzerland</cop><pub>S. Karger AG</pub><pmid>30384366</pmid><doi>10.1159/000494791</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1015-8987
ispartof Cellular physiology and biochemistry, 2018-11, Vol.50 (5), p.1726-1739
issn 1015-8987
1421-9778
language eng
recordid cdi_proquest_miscellaneous_2129537446
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Karger Open Access
subjects AMP-Activated Protein Kinases - metabolism
Animals
Cardiomyopathy
Diabetes
Diabetes Mellitus, Type 2 - complications
Diabetes Mellitus, Type 2 - pathology
Diabetes Mellitus, Type 2 - veterinary
Diabetic Cardiomyopathies - drug therapy
Diabetic Cardiomyopathies - etiology
Diabetic Cardiomyopathies - pathology
Diabetic cardiomyopathy
Diet
Drugs, Chinese Herbal - pharmacology
Drugs, Chinese Herbal - therapeutic use
Fatty acids
Glucose
Heart
Homeostasis
Lipids
Male
Metabolic disorders
Mice
Mice, Inbred C57BL
Mice, Knockout
Mitochondria
Mitochondria - drug effects
Mitochondria - metabolism
Myocardium - metabolism
Myocardium - pathology
Myocytes, Cardiac - cytology
Myocytes, Cardiac - drug effects
Myocytes, Cardiac - metabolism
Nuclear Respiratory Factor 1 - metabolism
Obesity
Original Paper
Oxidative Phosphorylation - drug effects
Oxidative stress
Palmitic Acid - pharmacology
Peroxisome proliferator-activated receptor gamma coactivator 1-alpha
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism
Phosphorylation
Proteins
Receptors, Leptin - deficiency
Receptors, Leptin - genetics
Shengmai San
Signal Transduction - drug effects
Sirtuin 1 - metabolism
Uncoupling Protein 2 - metabolism
title Shengmai San Alleviates Diabetic Cardiomyopathy Through Improvement of Mitochondrial Lipid Metabolic Disorder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T13%3A04%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shengmai%20San%20Alleviates%20Diabetic%20Cardiomyopathy%20Through%20Improvement%20of%20Mitochondrial%20Lipid%20Metabolic%20Disorder&rft.jtitle=Cellular%20physiology%20and%20biochemistry&rft.au=Tian,%20Jing&rft.date=2018-11-01&rft.volume=50&rft.issue=5&rft.spage=1726&rft.epage=1739&rft.pages=1726-1739&rft.issn=1015-8987&rft.eissn=1421-9778&rft_id=info:doi/10.1159/000494791&rft_dat=%3Cproquest_pubme%3E2129537446%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2301894759&rft_id=info:pmid/30384366&rft_doaj_id=oai_doaj_org_article_bdcf2794c63f425badf67743cddeebfb&rfr_iscdi=true