Cost-Effectiveness Analysis of Genotype-Guided Treatment Allocation in Patients with Alcohol Use Disorders Using Naltrexone or Acamprosate, Using a Modeling Approach
Alcohol use disorders (AUD) are a major contributor to the global burden of disease, and have huge societal impact. Some studies show that AUD patients carrying the G-allele of the OPRM1 variant c.118A>G respond better to naltrexone, resulting in reduced relapse rates compared to carriers of the...
Gespeichert in:
Veröffentlicht in: | European addiction research 2018-01, Vol.24 (5), p.245-254 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 254 |
---|---|
container_issue | 5 |
container_start_page | 245 |
container_title | European addiction research |
container_volume | 24 |
creator | Sluiter, Reinier L. Kievit, Wietske van der Wilt, Gert Jan Schene, Aart H. Teichert, Martina Coenen, Marieke J.H. Schellekens, Arnt |
description | Alcohol use disorders (AUD) are a major contributor to the global burden of disease, and have huge societal impact. Some studies show that AUD patients carrying the G-allele of the OPRM1 variant c.118A>G respond better to naltrexone, resulting in reduced relapse rates compared to carriers of the AA genotype. Genotype-guided treatment allocation of these patients carrying a G-allele to naltrexone could potentially improve the treatment outcome. However, cost-effectiveness of this strategy should be investigated before considering clinical implementation. We, therefore, evaluated costs and Quality-Adjusted Life-Years (QALYs), using a modelling approach, from an European perspective, of genotype-guided treatment allocation (G-allele carriers receiving naltrexone; AA homozygotes acamprosate or naltrexone) compared to standard care (random treatment allocation to acamprosate or naltrexone), by using a Markov model. Genotype-guided treatment allocation resulted in incremental costs of EUR 66 (95% CI –28 to 149) and incremental effects of 0.005 QALYs (95% CI 0.000–0.011) per patient (incremental cost-effectiveness ratio of EUR 13,350 per QALY). Sensitivity analyses showed that the risk ratio to relapse after treatment allocation had the largest impact on the cost-effectiveness. Depending on the willingness to pay for a gain of one QALY, probabilities that the intervention is cost-effective varies between 6 and 79%. In conclusion, pharmacogenetic treatment allocation of AUD patients to naltrexone, based on OPRM1 genotype, can be a cost-effective strategy, and could have potential individual and societal benefits. However, more evidence on the impact of genotype-guided treatment allocation on relapse is needed to substantiate these conclusions, as there is contradictory evidence about the effectiveness of OPRM1 genotyping. |
doi_str_mv | 10.1159/000494127 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2129537413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26792443</jstor_id><sourcerecordid>26792443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-3568b87fa511b6f2a69cafa9ce1baf765a4d9e10c4f5ce52cad7a5cf44881a63</originalsourceid><addsrcrecordid>eNpdkU2P0zAQhiMEYpeFA3dAlriARCB2nDi5IEXdpSAtH4dyjqbOuHVx42A7u_QH8T9x1BI-Th7P-_jVeN4keUyz15QW9Zssy3jNKRN3knPKGU3rqqZ3Y50xlpaVEGfJA-93WRZhIe4nZ3mWVzyv6Hnyc2F9SK-UQhn0DfboPWl6MAevPbGKLLG34TBguhx1hx1ZOYSwxz6QxhgrIWjbE92TL7GKXU9uddhGTdqtNeSrR3KpvXUdOh9vut-QT2CCwx-2R2IdaSTsB2c9BHx1AoB8tB2aqWyGqIHcPkzuKTAeH53Oi2T17mq1eJ9ef15-WDTXqeSChTQvympdCQUFpetSMShrCQpqiXQNSpQF8K5GmkmuCokFk9AJKKTivKoolPlF8vZoO4zrPXYyfsiBaQen9-AOrQXd_qv0ettu7E1b8poVdDJ4cTJw9vuIPrR77SUaAz3a0beMsrrIBad5RJ__h-7s6OLmJyrPK0YFn6iXR0rGHXmHah6GZu2UfTtnH9lnf08_k7_DjsCTI_AN3AbdDMzvnx7lnQ_2j8pKUTMeZ_kFoLu__w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2133821743</pqid></control><display><type>article</type><title>Cost-Effectiveness Analysis of Genotype-Guided Treatment Allocation in Patients with Alcohol Use Disorders Using Naltrexone or Acamprosate, Using a Modeling Approach</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Karger Journals</source><creator>Sluiter, Reinier L. ; Kievit, Wietske ; van der Wilt, Gert Jan ; Schene, Aart H. ; Teichert, Martina ; Coenen, Marieke J.H. ; Schellekens, Arnt</creator><creatorcontrib>Sluiter, Reinier L. ; Kievit, Wietske ; van der Wilt, Gert Jan ; Schene, Aart H. ; Teichert, Martina ; Coenen, Marieke J.H. ; Schellekens, Arnt</creatorcontrib><description>Alcohol use disorders (AUD) are a major contributor to the global burden of disease, and have huge societal impact. Some studies show that AUD patients carrying the G-allele of the OPRM1 variant c.118A>G respond better to naltrexone, resulting in reduced relapse rates compared to carriers of the AA genotype. Genotype-guided treatment allocation of these patients carrying a G-allele to naltrexone could potentially improve the treatment outcome. However, cost-effectiveness of this strategy should be investigated before considering clinical implementation. We, therefore, evaluated costs and Quality-Adjusted Life-Years (QALYs), using a modelling approach, from an European perspective, of genotype-guided treatment allocation (G-allele carriers receiving naltrexone; AA homozygotes acamprosate or naltrexone) compared to standard care (random treatment allocation to acamprosate or naltrexone), by using a Markov model. Genotype-guided treatment allocation resulted in incremental costs of EUR 66 (95% CI –28 to 149) and incremental effects of 0.005 QALYs (95% CI 0.000–0.011) per patient (incremental cost-effectiveness ratio of EUR 13,350 per QALY). Sensitivity analyses showed that the risk ratio to relapse after treatment allocation had the largest impact on the cost-effectiveness. Depending on the willingness to pay for a gain of one QALY, probabilities that the intervention is cost-effective varies between 6 and 79%. In conclusion, pharmacogenetic treatment allocation of AUD patients to naltrexone, based on OPRM1 genotype, can be a cost-effective strategy, and could have potential individual and societal benefits. However, more evidence on the impact of genotype-guided treatment allocation on relapse is needed to substantiate these conclusions, as there is contradictory evidence about the effectiveness of OPRM1 genotyping.</description><identifier>ISSN: 1022-6877</identifier><identifier>ISSN: 1421-9891</identifier><identifier>EISSN: 1421-9891</identifier><identifier>DOI: 10.1159/000494127</identifier><identifier>PMID: 30384381</identifier><language>eng</language><publisher>Basel, Switzerland: S. Karger AG</publisher><subject>Acamprosate - economics ; Acamprosate - therapeutic use ; Alcohol use ; Alcoholism - drug therapy ; Alcoholism - economics ; Alcoholism - genetics ; Alleles ; Clinical outcomes ; Computer Simulation ; Cost analysis ; Cost-Benefit Analysis ; Genotype ; Genotype & phenotype ; Health Care Costs - statistics & numerical data ; Humans ; Markov Chains ; Models, Statistical ; Naltrexone - economics ; Naltrexone - therapeutic use ; Pharmacogenetics - economics ; Quality-Adjusted Life Years ; Receptors, Opioid, mu - genetics ; Research Report ; Treatment Outcome</subject><ispartof>European addiction research, 2018-01, Vol.24 (5), p.245-254</ispartof><rights>2018 S. Karger AG, Basel</rights><rights>The Author(s). Published by S. Karger AG, Basel</rights><rights>2018 S. Karger AG, Basel.</rights><rights>Copyright S. Karger AG 2018</rights><rights>Copyright © 2018 by S. Karger AG, Basel 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-3568b87fa511b6f2a69cafa9ce1baf765a4d9e10c4f5ce52cad7a5cf44881a63</citedby><orcidid>0000-0002-7715-5209</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26792443$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26792443$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,2429,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30384381$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sluiter, Reinier L.</creatorcontrib><creatorcontrib>Kievit, Wietske</creatorcontrib><creatorcontrib>van der Wilt, Gert Jan</creatorcontrib><creatorcontrib>Schene, Aart H.</creatorcontrib><creatorcontrib>Teichert, Martina</creatorcontrib><creatorcontrib>Coenen, Marieke J.H.</creatorcontrib><creatorcontrib>Schellekens, Arnt</creatorcontrib><title>Cost-Effectiveness Analysis of Genotype-Guided Treatment Allocation in Patients with Alcohol Use Disorders Using Naltrexone or Acamprosate, Using a Modeling Approach</title><title>European addiction research</title><addtitle>Eur Addict Res</addtitle><description>Alcohol use disorders (AUD) are a major contributor to the global burden of disease, and have huge societal impact. Some studies show that AUD patients carrying the G-allele of the OPRM1 variant c.118A>G respond better to naltrexone, resulting in reduced relapse rates compared to carriers of the AA genotype. Genotype-guided treatment allocation of these patients carrying a G-allele to naltrexone could potentially improve the treatment outcome. However, cost-effectiveness of this strategy should be investigated before considering clinical implementation. We, therefore, evaluated costs and Quality-Adjusted Life-Years (QALYs), using a modelling approach, from an European perspective, of genotype-guided treatment allocation (G-allele carriers receiving naltrexone; AA homozygotes acamprosate or naltrexone) compared to standard care (random treatment allocation to acamprosate or naltrexone), by using a Markov model. Genotype-guided treatment allocation resulted in incremental costs of EUR 66 (95% CI –28 to 149) and incremental effects of 0.005 QALYs (95% CI 0.000–0.011) per patient (incremental cost-effectiveness ratio of EUR 13,350 per QALY). Sensitivity analyses showed that the risk ratio to relapse after treatment allocation had the largest impact on the cost-effectiveness. Depending on the willingness to pay for a gain of one QALY, probabilities that the intervention is cost-effective varies between 6 and 79%. In conclusion, pharmacogenetic treatment allocation of AUD patients to naltrexone, based on OPRM1 genotype, can be a cost-effective strategy, and could have potential individual and societal benefits. However, more evidence on the impact of genotype-guided treatment allocation on relapse is needed to substantiate these conclusions, as there is contradictory evidence about the effectiveness of OPRM1 genotyping.</description><subject>Acamprosate - economics</subject><subject>Acamprosate - therapeutic use</subject><subject>Alcohol use</subject><subject>Alcoholism - drug therapy</subject><subject>Alcoholism - economics</subject><subject>Alcoholism - genetics</subject><subject>Alleles</subject><subject>Clinical outcomes</subject><subject>Computer Simulation</subject><subject>Cost analysis</subject><subject>Cost-Benefit Analysis</subject><subject>Genotype</subject><subject>Genotype & phenotype</subject><subject>Health Care Costs - statistics & numerical data</subject><subject>Humans</subject><subject>Markov Chains</subject><subject>Models, Statistical</subject><subject>Naltrexone - economics</subject><subject>Naltrexone - therapeutic use</subject><subject>Pharmacogenetics - economics</subject><subject>Quality-Adjusted Life Years</subject><subject>Receptors, Opioid, mu - genetics</subject><subject>Research Report</subject><subject>Treatment Outcome</subject><issn>1022-6877</issn><issn>1421-9891</issn><issn>1421-9891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>M--</sourceid><sourceid>EIF</sourceid><recordid>eNpdkU2P0zAQhiMEYpeFA3dAlriARCB2nDi5IEXdpSAtH4dyjqbOuHVx42A7u_QH8T9x1BI-Th7P-_jVeN4keUyz15QW9Zssy3jNKRN3knPKGU3rqqZ3Y50xlpaVEGfJA-93WRZhIe4nZ3mWVzyv6Hnyc2F9SK-UQhn0DfboPWl6MAevPbGKLLG34TBguhx1hx1ZOYSwxz6QxhgrIWjbE92TL7GKXU9uddhGTdqtNeSrR3KpvXUdOh9vut-QT2CCwx-2R2IdaSTsB2c9BHx1AoB8tB2aqWyGqIHcPkzuKTAeH53Oi2T17mq1eJ9ef15-WDTXqeSChTQvympdCQUFpetSMShrCQpqiXQNSpQF8K5GmkmuCokFk9AJKKTivKoolPlF8vZoO4zrPXYyfsiBaQen9-AOrQXd_qv0ettu7E1b8poVdDJ4cTJw9vuIPrR77SUaAz3a0beMsrrIBad5RJ__h-7s6OLmJyrPK0YFn6iXR0rGHXmHah6GZu2UfTtnH9lnf08_k7_DjsCTI_AN3AbdDMzvnx7lnQ_2j8pKUTMeZ_kFoLu__w</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Sluiter, Reinier L.</creator><creator>Kievit, Wietske</creator><creator>van der Wilt, Gert Jan</creator><creator>Schene, Aart H.</creator><creator>Teichert, Martina</creator><creator>Coenen, Marieke J.H.</creator><creator>Schellekens, Arnt</creator><general>S. Karger AG</general><scope>M--</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K7.</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7715-5209</orcidid></search><sort><creationdate>20180101</creationdate><title>Cost-Effectiveness Analysis of Genotype-Guided Treatment Allocation in Patients with Alcohol Use Disorders Using Naltrexone or Acamprosate, Using a Modeling Approach</title><author>Sluiter, Reinier L. ; Kievit, Wietske ; van der Wilt, Gert Jan ; Schene, Aart H. ; Teichert, Martina ; Coenen, Marieke J.H. ; Schellekens, Arnt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-3568b87fa511b6f2a69cafa9ce1baf765a4d9e10c4f5ce52cad7a5cf44881a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acamprosate - economics</topic><topic>Acamprosate - therapeutic use</topic><topic>Alcohol use</topic><topic>Alcoholism - drug therapy</topic><topic>Alcoholism - economics</topic><topic>Alcoholism - genetics</topic><topic>Alleles</topic><topic>Clinical outcomes</topic><topic>Computer Simulation</topic><topic>Cost analysis</topic><topic>Cost-Benefit Analysis</topic><topic>Genotype</topic><topic>Genotype & phenotype</topic><topic>Health Care Costs - statistics & numerical data</topic><topic>Humans</topic><topic>Markov Chains</topic><topic>Models, Statistical</topic><topic>Naltrexone - economics</topic><topic>Naltrexone - therapeutic use</topic><topic>Pharmacogenetics - economics</topic><topic>Quality-Adjusted Life Years</topic><topic>Receptors, Opioid, mu - genetics</topic><topic>Research Report</topic><topic>Treatment Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sluiter, Reinier L.</creatorcontrib><creatorcontrib>Kievit, Wietske</creatorcontrib><creatorcontrib>van der Wilt, Gert Jan</creatorcontrib><creatorcontrib>Schene, Aart H.</creatorcontrib><creatorcontrib>Teichert, Martina</creatorcontrib><creatorcontrib>Coenen, Marieke J.H.</creatorcontrib><creatorcontrib>Schellekens, Arnt</creatorcontrib><collection>Karger Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Criminal Justice (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>European addiction research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sluiter, Reinier L.</au><au>Kievit, Wietske</au><au>van der Wilt, Gert Jan</au><au>Schene, Aart H.</au><au>Teichert, Martina</au><au>Coenen, Marieke J.H.</au><au>Schellekens, Arnt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cost-Effectiveness Analysis of Genotype-Guided Treatment Allocation in Patients with Alcohol Use Disorders Using Naltrexone or Acamprosate, Using a Modeling Approach</atitle><jtitle>European addiction research</jtitle><addtitle>Eur Addict Res</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>24</volume><issue>5</issue><spage>245</spage><epage>254</epage><pages>245-254</pages><issn>1022-6877</issn><issn>1421-9891</issn><eissn>1421-9891</eissn><abstract>Alcohol use disorders (AUD) are a major contributor to the global burden of disease, and have huge societal impact. Some studies show that AUD patients carrying the G-allele of the OPRM1 variant c.118A>G respond better to naltrexone, resulting in reduced relapse rates compared to carriers of the AA genotype. Genotype-guided treatment allocation of these patients carrying a G-allele to naltrexone could potentially improve the treatment outcome. However, cost-effectiveness of this strategy should be investigated before considering clinical implementation. We, therefore, evaluated costs and Quality-Adjusted Life-Years (QALYs), using a modelling approach, from an European perspective, of genotype-guided treatment allocation (G-allele carriers receiving naltrexone; AA homozygotes acamprosate or naltrexone) compared to standard care (random treatment allocation to acamprosate or naltrexone), by using a Markov model. Genotype-guided treatment allocation resulted in incremental costs of EUR 66 (95% CI –28 to 149) and incremental effects of 0.005 QALYs (95% CI 0.000–0.011) per patient (incremental cost-effectiveness ratio of EUR 13,350 per QALY). Sensitivity analyses showed that the risk ratio to relapse after treatment allocation had the largest impact on the cost-effectiveness. Depending on the willingness to pay for a gain of one QALY, probabilities that the intervention is cost-effective varies between 6 and 79%. In conclusion, pharmacogenetic treatment allocation of AUD patients to naltrexone, based on OPRM1 genotype, can be a cost-effective strategy, and could have potential individual and societal benefits. However, more evidence on the impact of genotype-guided treatment allocation on relapse is needed to substantiate these conclusions, as there is contradictory evidence about the effectiveness of OPRM1 genotyping.</abstract><cop>Basel, Switzerland</cop><pub>S. Karger AG</pub><pmid>30384381</pmid><doi>10.1159/000494127</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7715-5209</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-6877 |
ispartof | European addiction research, 2018-01, Vol.24 (5), p.245-254 |
issn | 1022-6877 1421-9891 1421-9891 |
language | eng |
recordid | cdi_proquest_miscellaneous_2129537413 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; Karger Journals |
subjects | Acamprosate - economics Acamprosate - therapeutic use Alcohol use Alcoholism - drug therapy Alcoholism - economics Alcoholism - genetics Alleles Clinical outcomes Computer Simulation Cost analysis Cost-Benefit Analysis Genotype Genotype & phenotype Health Care Costs - statistics & numerical data Humans Markov Chains Models, Statistical Naltrexone - economics Naltrexone - therapeutic use Pharmacogenetics - economics Quality-Adjusted Life Years Receptors, Opioid, mu - genetics Research Report Treatment Outcome |
title | Cost-Effectiveness Analysis of Genotype-Guided Treatment Allocation in Patients with Alcohol Use Disorders Using Naltrexone or Acamprosate, Using a Modeling Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A09%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cost-Effectiveness%20Analysis%20of%20Genotype-Guided%20Treatment%20Allocation%20in%20Patients%20with%20Alcohol%20Use%20Disorders%20Using%20Naltrexone%20or%20Acamprosate,%20Using%20a%20Modeling%20Approach&rft.jtitle=European%20addiction%20research&rft.au=Sluiter,%20Reinier%20L.&rft.date=2018-01-01&rft.volume=24&rft.issue=5&rft.spage=245&rft.epage=254&rft.pages=245-254&rft.issn=1022-6877&rft.eissn=1421-9891&rft_id=info:doi/10.1159/000494127&rft_dat=%3Cjstor_proqu%3E26792443%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2133821743&rft_id=info:pmid/30384381&rft_jstor_id=26792443&rfr_iscdi=true |