Morphology-controlled synthesis and sulfur modification of 3D hierarchical layered double hydroxides for gaseous elemental mercury removal

[Display omitted] Porous structure and effective active site are beneficial for gaseous elemental mercury (Hg0) capture. Two kinds of hierarchical porous layered double hydroxides (LDHs) were synthesized through an in-situ growth method. Sulfur was used for the modification of these LDHs to enhance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2019-02, Vol.536, p.431-439
Hauptverfasser: Yuan, Yong, Xu, Haomiao, Liu, Wei, Chen, Lihong, Quan, Zongwen, Liu, Ping, Qu, Zan, Yan, Naiqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 439
container_issue
container_start_page 431
container_title Journal of colloid and interface science
container_volume 536
creator Yuan, Yong
Xu, Haomiao
Liu, Wei
Chen, Lihong
Quan, Zongwen
Liu, Ping
Qu, Zan
Yan, Naiqiang
description [Display omitted] Porous structure and effective active site are beneficial for gaseous elemental mercury (Hg0) capture. Two kinds of hierarchical porous layered double hydroxides (LDHs) were synthesized through an in-situ growth method. Sulfur was used for the modification of these LDHs to enhance Hg0 removal performance. Two as-prepared NiAl-S4@SiO2 microspheres displayed three-dimensional morphologies, accordingly exhibited as core-shell and urchin-like morphologies. XRD, BET, FTIR, TEM and SEM were employed to investigate the structure effect on Hg0 uptake. The results indicated that after S-modification, the Hg0 removal efficiencies as well as SO2 resistance were enhanced. The Hg0 removal performances follow the order of: NiAl-S4@SiO2-urchin > NiAl-S4@SiO2-core at 100 °C. The mechanism for Hg0 removal was discussed based on the results of TPD, EDX and XPS. The porous structure of NiAl-S4@SiO2 composite was beneficial for gas transformation and intercalated [S4]2− ions were favorable for mercury uptake. The polysulfide combined with adsorbed mercury and formed HgS. Such materials exhibit promising potential for mercury uptake from SHg mixed flue gas.
doi_str_mv 10.1016/j.jcis.2018.10.062
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2129536486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979718312591</els_id><sourcerecordid>2129536486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-512148501a80c672d46bfea774da805c247f49a401f69c001bd6674013ac8b7c3</originalsourceid><addsrcrecordid>eNp9kc2O1DAQhC0EYoeFF-CAfOSSwX-xY4kLWn6lRVzgbDl2Z-OREw92siKvwFPjaBaOnKwufVVydyH0kpIjJVS-OR1PLpQjI7SrwpFI9ggdKNFtoyjhj9GBEEYbrbS6Qs9KORFCadvqp-iKE94JIvQB_f6a8nlMMd1tjUvzklOM4HHZ5mWEEgq2c53WOKwZT8mHITi7hDTjNGD-Ho8Bss1urGrE0W6Qq9mntY-Ax83n9Ct4KHhIGd_ZAmktGCJMMC-VnyC7NW84w5TubXyOngw2Fnjx8F6jHx8_fL_53Nx--_Tl5t1t47jmS9NSRkXXEmo74qRiXsh-AKuU8FVpHRNqENoKQgepXd2591KqOnLrul45fo1eX3LPOf1coSxmCsVBjHbeP2gYZbrlUnSyouyCupxKyTCYcw6TzZuhxOwdmJPZOzB7B7tWO6imVw_5az-B_2f5e_QKvL0AULe8rxc0xQWYHfiQwS3Gp_C__D-fO5sB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2129536486</pqid></control><display><type>article</type><title>Morphology-controlled synthesis and sulfur modification of 3D hierarchical layered double hydroxides for gaseous elemental mercury removal</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Yuan, Yong ; Xu, Haomiao ; Liu, Wei ; Chen, Lihong ; Quan, Zongwen ; Liu, Ping ; Qu, Zan ; Yan, Naiqiang</creator><creatorcontrib>Yuan, Yong ; Xu, Haomiao ; Liu, Wei ; Chen, Lihong ; Quan, Zongwen ; Liu, Ping ; Qu, Zan ; Yan, Naiqiang</creatorcontrib><description>[Display omitted] Porous structure and effective active site are beneficial for gaseous elemental mercury (Hg0) capture. Two kinds of hierarchical porous layered double hydroxides (LDHs) were synthesized through an in-situ growth method. Sulfur was used for the modification of these LDHs to enhance Hg0 removal performance. Two as-prepared NiAl-S4@SiO2 microspheres displayed three-dimensional morphologies, accordingly exhibited as core-shell and urchin-like morphologies. XRD, BET, FTIR, TEM and SEM were employed to investigate the structure effect on Hg0 uptake. The results indicated that after S-modification, the Hg0 removal efficiencies as well as SO2 resistance were enhanced. The Hg0 removal performances follow the order of: NiAl-S4@SiO2-urchin &gt; NiAl-S4@SiO2-core at 100 °C. The mechanism for Hg0 removal was discussed based on the results of TPD, EDX and XPS. The porous structure of NiAl-S4@SiO2 composite was beneficial for gas transformation and intercalated [S4]2− ions were favorable for mercury uptake. The polysulfide combined with adsorbed mercury and formed HgS. Such materials exhibit promising potential for mercury uptake from SHg mixed flue gas.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2018.10.062</identifier><identifier>PMID: 30384049</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adsorption ; Gaseous mercury ; Layered double hydroxides ; Morphology ; Sulfur</subject><ispartof>Journal of colloid and interface science, 2019-02, Vol.536, p.431-439</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-512148501a80c672d46bfea774da805c247f49a401f69c001bd6674013ac8b7c3</citedby><cites>FETCH-LOGICAL-c393t-512148501a80c672d46bfea774da805c247f49a401f69c001bd6674013ac8b7c3</cites><orcidid>0000-0003-3736-4548</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2018.10.062$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30384049$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuan, Yong</creatorcontrib><creatorcontrib>Xu, Haomiao</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Chen, Lihong</creatorcontrib><creatorcontrib>Quan, Zongwen</creatorcontrib><creatorcontrib>Liu, Ping</creatorcontrib><creatorcontrib>Qu, Zan</creatorcontrib><creatorcontrib>Yan, Naiqiang</creatorcontrib><title>Morphology-controlled synthesis and sulfur modification of 3D hierarchical layered double hydroxides for gaseous elemental mercury removal</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>[Display omitted] Porous structure and effective active site are beneficial for gaseous elemental mercury (Hg0) capture. Two kinds of hierarchical porous layered double hydroxides (LDHs) were synthesized through an in-situ growth method. Sulfur was used for the modification of these LDHs to enhance Hg0 removal performance. Two as-prepared NiAl-S4@SiO2 microspheres displayed three-dimensional morphologies, accordingly exhibited as core-shell and urchin-like morphologies. XRD, BET, FTIR, TEM and SEM were employed to investigate the structure effect on Hg0 uptake. The results indicated that after S-modification, the Hg0 removal efficiencies as well as SO2 resistance were enhanced. The Hg0 removal performances follow the order of: NiAl-S4@SiO2-urchin &gt; NiAl-S4@SiO2-core at 100 °C. The mechanism for Hg0 removal was discussed based on the results of TPD, EDX and XPS. The porous structure of NiAl-S4@SiO2 composite was beneficial for gas transformation and intercalated [S4]2− ions were favorable for mercury uptake. The polysulfide combined with adsorbed mercury and formed HgS. Such materials exhibit promising potential for mercury uptake from SHg mixed flue gas.</description><subject>Adsorption</subject><subject>Gaseous mercury</subject><subject>Layered double hydroxides</subject><subject>Morphology</subject><subject>Sulfur</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kc2O1DAQhC0EYoeFF-CAfOSSwX-xY4kLWn6lRVzgbDl2Z-OREw92siKvwFPjaBaOnKwufVVydyH0kpIjJVS-OR1PLpQjI7SrwpFI9ggdKNFtoyjhj9GBEEYbrbS6Qs9KORFCadvqp-iKE94JIvQB_f6a8nlMMd1tjUvzklOM4HHZ5mWEEgq2c53WOKwZT8mHITi7hDTjNGD-Ho8Bss1urGrE0W6Qq9mntY-Ax83n9Ct4KHhIGd_ZAmktGCJMMC-VnyC7NW84w5TubXyOngw2Fnjx8F6jHx8_fL_53Nx--_Tl5t1t47jmS9NSRkXXEmo74qRiXsh-AKuU8FVpHRNqENoKQgepXd2591KqOnLrul45fo1eX3LPOf1coSxmCsVBjHbeP2gYZbrlUnSyouyCupxKyTCYcw6TzZuhxOwdmJPZOzB7B7tWO6imVw_5az-B_2f5e_QKvL0AULe8rxc0xQWYHfiQwS3Gp_C__D-fO5sB</recordid><startdate>20190215</startdate><enddate>20190215</enddate><creator>Yuan, Yong</creator><creator>Xu, Haomiao</creator><creator>Liu, Wei</creator><creator>Chen, Lihong</creator><creator>Quan, Zongwen</creator><creator>Liu, Ping</creator><creator>Qu, Zan</creator><creator>Yan, Naiqiang</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3736-4548</orcidid></search><sort><creationdate>20190215</creationdate><title>Morphology-controlled synthesis and sulfur modification of 3D hierarchical layered double hydroxides for gaseous elemental mercury removal</title><author>Yuan, Yong ; Xu, Haomiao ; Liu, Wei ; Chen, Lihong ; Quan, Zongwen ; Liu, Ping ; Qu, Zan ; Yan, Naiqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-512148501a80c672d46bfea774da805c247f49a401f69c001bd6674013ac8b7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adsorption</topic><topic>Gaseous mercury</topic><topic>Layered double hydroxides</topic><topic>Morphology</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Yong</creatorcontrib><creatorcontrib>Xu, Haomiao</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Chen, Lihong</creatorcontrib><creatorcontrib>Quan, Zongwen</creatorcontrib><creatorcontrib>Liu, Ping</creatorcontrib><creatorcontrib>Qu, Zan</creatorcontrib><creatorcontrib>Yan, Naiqiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Yong</au><au>Xu, Haomiao</au><au>Liu, Wei</au><au>Chen, Lihong</au><au>Quan, Zongwen</au><au>Liu, Ping</au><au>Qu, Zan</au><au>Yan, Naiqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphology-controlled synthesis and sulfur modification of 3D hierarchical layered double hydroxides for gaseous elemental mercury removal</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2019-02-15</date><risdate>2019</risdate><volume>536</volume><spage>431</spage><epage>439</epage><pages>431-439</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted] Porous structure and effective active site are beneficial for gaseous elemental mercury (Hg0) capture. Two kinds of hierarchical porous layered double hydroxides (LDHs) were synthesized through an in-situ growth method. Sulfur was used for the modification of these LDHs to enhance Hg0 removal performance. Two as-prepared NiAl-S4@SiO2 microspheres displayed three-dimensional morphologies, accordingly exhibited as core-shell and urchin-like morphologies. XRD, BET, FTIR, TEM and SEM were employed to investigate the structure effect on Hg0 uptake. The results indicated that after S-modification, the Hg0 removal efficiencies as well as SO2 resistance were enhanced. The Hg0 removal performances follow the order of: NiAl-S4@SiO2-urchin &gt; NiAl-S4@SiO2-core at 100 °C. The mechanism for Hg0 removal was discussed based on the results of TPD, EDX and XPS. The porous structure of NiAl-S4@SiO2 composite was beneficial for gas transformation and intercalated [S4]2− ions were favorable for mercury uptake. The polysulfide combined with adsorbed mercury and formed HgS. Such materials exhibit promising potential for mercury uptake from SHg mixed flue gas.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30384049</pmid><doi>10.1016/j.jcis.2018.10.062</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3736-4548</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2019-02, Vol.536, p.431-439
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_2129536486
source Elsevier ScienceDirect Journals Complete
subjects Adsorption
Gaseous mercury
Layered double hydroxides
Morphology
Sulfur
title Morphology-controlled synthesis and sulfur modification of 3D hierarchical layered double hydroxides for gaseous elemental mercury removal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A42%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphology-controlled%20synthesis%20and%20sulfur%20modification%20of%203D%20hierarchical%20layered%20double%20hydroxides%20for%20gaseous%20elemental%20mercury%20removal&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Yuan,%20Yong&rft.date=2019-02-15&rft.volume=536&rft.spage=431&rft.epage=439&rft.pages=431-439&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2018.10.062&rft_dat=%3Cproquest_cross%3E2129536486%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2129536486&rft_id=info:pmid/30384049&rft_els_id=S0021979718312591&rfr_iscdi=true