Design of an Inorganic Mesoporous Hole‐Transporting Layer for Highly Efficient and Stable Inverted Perovskite Solar Cells

The unstable feature of the widely employed organic hole‐transporting materials (HTMs) (e.g., spiro‐MeOTAD) significantly limits the practical application of perovskite solar cells (PSCs). Therefore, it is desirable to design new structured PSCs with stable HTMs presenting excellent carrier extracti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2018-12, Vol.30 (52), p.e1805660-n/a
Hauptverfasser: Chen, Yu, Yang, Zhou, Wang, Shubo, Zheng, Xiaojia, Wu, Yihui, Yuan, Ningyi, Zhang, Wen‐Hua, Liu, Shengzhong (Frank)
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 52
container_start_page e1805660
container_title Advanced materials (Weinheim)
container_volume 30
creator Chen, Yu
Yang, Zhou
Wang, Shubo
Zheng, Xiaojia
Wu, Yihui
Yuan, Ningyi
Zhang, Wen‐Hua
Liu, Shengzhong (Frank)
description The unstable feature of the widely employed organic hole‐transporting materials (HTMs) (e.g., spiro‐MeOTAD) significantly limits the practical application of perovskite solar cells (PSCs). Therefore, it is desirable to design new structured PSCs with stable HTMs presenting excellent carrier extraction and transfer properties. This work demonstrates a new inverted PSC configuration. The new PSC has a graded band alignment and bilayered inorganic HTMs (i.e., compact NiOx and mesoporous CuGaO2). In comparison with planar‐structured PSCs, the mesoporous CuGaO2 can effectively extract holes from perovskite due to the increased contact area of the perovskite/HTM. The graded energy alignment constructed in the ultrathin compact NiOx, mesoporous CuGaO2, and perovskite can facilitate carrier transfer and depress charge recombination. As a result, the champion device based on the newly designed mesoscopic PSCs yields a stabilized efficiency of ≈20%, which is considered one of the best results for inverted PSCs with inorganic HTMs. Additionally, the unencapsulated PSC device retains more than 80% of its original efficiency when subjected to thermal aging at 85 °C for 1000 h in a nitrogen atmosphere, thus demonstrating superior thermal stability of the device. This study may pave a new avenue to rational design of highly efficient and stable PSCs. A graded bilayered inorganic hole‐transporting layer (including compact NiOx and mesoporous CuGaO2) is developed for inverted perovskite solar cells. The resulting devices demonstrate both high efficiency, with the champion one giving a stabilized efficiency of ≈20% and superior thermal stability with >80% of the initial efficiency being retained subject to 1000 hours' thermal aging at 85 °C.
doi_str_mv 10.1002/adma.201805660
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2129531799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2159348120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4780-611bbede25834a8b3e03a5d0eab35d70439234877c84a887cb23b18e8dd399923</originalsourceid><addsrcrecordid>eNqFkcFuEzEQhi0EakPplSOyxIXLpmN7vWsfo7QllVJRqeW88q5ng8vGDvamKOqFR-AZeRJcpS0Sl54szXzzeUY_Ie8ZTBkAPzF2baYcmAJZVfCKTJjkrChBy9dkAlrIQlelOiRvU7oFAF1BdUAOBQhVc6Ym5P4Uk1t5GnpqPL3wIa6Mdx29xBQ2IYZtoosw4J9fv2-i8SmXRudXdGl2GGkfIl241bdhR8_63nUO_Zg1ll6Pph0w6-4wjmjpFcZwl767Eel1GEykcxyG9I686c2Q8PjxPSJfz89u5oti-eXzxXy2LLqyVlBUjLUtWuRSidKoViAIIy2gaYW0NZRCc1Gquu5Ubqu6a7lomUJlrdA6947Ip713E8OPLaaxWbvU5Q2Mx3xgwxnXUrBa64x-_A-9Ddvo83aZkjp_wzhkarqnuhhSitg3m-jWJu4aBs1DLM1DLM1zLHngw6N2267RPuNPOWRA74GfbsDdC7pmdno5-yf_C0R-mjE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159348120</pqid></control><display><type>article</type><title>Design of an Inorganic Mesoporous Hole‐Transporting Layer for Highly Efficient and Stable Inverted Perovskite Solar Cells</title><source>Access via Wiley Online Library</source><creator>Chen, Yu ; Yang, Zhou ; Wang, Shubo ; Zheng, Xiaojia ; Wu, Yihui ; Yuan, Ningyi ; Zhang, Wen‐Hua ; Liu, Shengzhong (Frank)</creator><creatorcontrib>Chen, Yu ; Yang, Zhou ; Wang, Shubo ; Zheng, Xiaojia ; Wu, Yihui ; Yuan, Ningyi ; Zhang, Wen‐Hua ; Liu, Shengzhong (Frank)</creatorcontrib><description>The unstable feature of the widely employed organic hole‐transporting materials (HTMs) (e.g., spiro‐MeOTAD) significantly limits the practical application of perovskite solar cells (PSCs). Therefore, it is desirable to design new structured PSCs with stable HTMs presenting excellent carrier extraction and transfer properties. This work demonstrates a new inverted PSC configuration. The new PSC has a graded band alignment and bilayered inorganic HTMs (i.e., compact NiOx and mesoporous CuGaO2). In comparison with planar‐structured PSCs, the mesoporous CuGaO2 can effectively extract holes from perovskite due to the increased contact area of the perovskite/HTM. The graded energy alignment constructed in the ultrathin compact NiOx, mesoporous CuGaO2, and perovskite can facilitate carrier transfer and depress charge recombination. As a result, the champion device based on the newly designed mesoscopic PSCs yields a stabilized efficiency of ≈20%, which is considered one of the best results for inverted PSCs with inorganic HTMs. Additionally, the unencapsulated PSC device retains more than 80% of its original efficiency when subjected to thermal aging at 85 °C for 1000 h in a nitrogen atmosphere, thus demonstrating superior thermal stability of the device. This study may pave a new avenue to rational design of highly efficient and stable PSCs. A graded bilayered inorganic hole‐transporting layer (including compact NiOx and mesoporous CuGaO2) is developed for inverted perovskite solar cells. The resulting devices demonstrate both high efficiency, with the champion one giving a stabilized efficiency of ≈20% and superior thermal stability with &gt;80% of the initial efficiency being retained subject to 1000 hours' thermal aging at 85 °C.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201805660</identifier><identifier>PMID: 30387218</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Alignment ; Carrier transport ; Charge transfer ; energy alignment ; inverted perovskite solar cells ; Materials science ; mesoporous hole‐transporting layer ; Perovskites ; Photovoltaic cells ; p‐type inorganic semiconductor ; Solar cells ; stability ; Thermal stability</subject><ispartof>Advanced materials (Weinheim), 2018-12, Vol.30 (52), p.e1805660-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4780-611bbede25834a8b3e03a5d0eab35d70439234877c84a887cb23b18e8dd399923</citedby><cites>FETCH-LOGICAL-c4780-611bbede25834a8b3e03a5d0eab35d70439234877c84a887cb23b18e8dd399923</cites><orcidid>0000-0002-6676-6231</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201805660$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201805660$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30387218$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Yang, Zhou</creatorcontrib><creatorcontrib>Wang, Shubo</creatorcontrib><creatorcontrib>Zheng, Xiaojia</creatorcontrib><creatorcontrib>Wu, Yihui</creatorcontrib><creatorcontrib>Yuan, Ningyi</creatorcontrib><creatorcontrib>Zhang, Wen‐Hua</creatorcontrib><creatorcontrib>Liu, Shengzhong (Frank)</creatorcontrib><title>Design of an Inorganic Mesoporous Hole‐Transporting Layer for Highly Efficient and Stable Inverted Perovskite Solar Cells</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The unstable feature of the widely employed organic hole‐transporting materials (HTMs) (e.g., spiro‐MeOTAD) significantly limits the practical application of perovskite solar cells (PSCs). Therefore, it is desirable to design new structured PSCs with stable HTMs presenting excellent carrier extraction and transfer properties. This work demonstrates a new inverted PSC configuration. The new PSC has a graded band alignment and bilayered inorganic HTMs (i.e., compact NiOx and mesoporous CuGaO2). In comparison with planar‐structured PSCs, the mesoporous CuGaO2 can effectively extract holes from perovskite due to the increased contact area of the perovskite/HTM. The graded energy alignment constructed in the ultrathin compact NiOx, mesoporous CuGaO2, and perovskite can facilitate carrier transfer and depress charge recombination. As a result, the champion device based on the newly designed mesoscopic PSCs yields a stabilized efficiency of ≈20%, which is considered one of the best results for inverted PSCs with inorganic HTMs. Additionally, the unencapsulated PSC device retains more than 80% of its original efficiency when subjected to thermal aging at 85 °C for 1000 h in a nitrogen atmosphere, thus demonstrating superior thermal stability of the device. This study may pave a new avenue to rational design of highly efficient and stable PSCs. A graded bilayered inorganic hole‐transporting layer (including compact NiOx and mesoporous CuGaO2) is developed for inverted perovskite solar cells. The resulting devices demonstrate both high efficiency, with the champion one giving a stabilized efficiency of ≈20% and superior thermal stability with &gt;80% of the initial efficiency being retained subject to 1000 hours' thermal aging at 85 °C.</description><subject>Alignment</subject><subject>Carrier transport</subject><subject>Charge transfer</subject><subject>energy alignment</subject><subject>inverted perovskite solar cells</subject><subject>Materials science</subject><subject>mesoporous hole‐transporting layer</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>p‐type inorganic semiconductor</subject><subject>Solar cells</subject><subject>stability</subject><subject>Thermal stability</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkcFuEzEQhi0EakPplSOyxIXLpmN7vWsfo7QllVJRqeW88q5ng8vGDvamKOqFR-AZeRJcpS0Sl54szXzzeUY_Ie8ZTBkAPzF2baYcmAJZVfCKTJjkrChBy9dkAlrIQlelOiRvU7oFAF1BdUAOBQhVc6Ym5P4Uk1t5GnpqPL3wIa6Mdx29xBQ2IYZtoosw4J9fv2-i8SmXRudXdGl2GGkfIl241bdhR8_63nUO_Zg1ll6Pph0w6-4wjmjpFcZwl767Eel1GEykcxyG9I686c2Q8PjxPSJfz89u5oti-eXzxXy2LLqyVlBUjLUtWuRSidKoViAIIy2gaYW0NZRCc1Gquu5Ubqu6a7lomUJlrdA6947Ip713E8OPLaaxWbvU5Q2Mx3xgwxnXUrBa64x-_A-9Ddvo83aZkjp_wzhkarqnuhhSitg3m-jWJu4aBs1DLM1DLM1zLHngw6N2267RPuNPOWRA74GfbsDdC7pmdno5-yf_C0R-mjE</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Chen, Yu</creator><creator>Yang, Zhou</creator><creator>Wang, Shubo</creator><creator>Zheng, Xiaojia</creator><creator>Wu, Yihui</creator><creator>Yuan, Ningyi</creator><creator>Zhang, Wen‐Hua</creator><creator>Liu, Shengzhong (Frank)</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6676-6231</orcidid></search><sort><creationdate>201812</creationdate><title>Design of an Inorganic Mesoporous Hole‐Transporting Layer for Highly Efficient and Stable Inverted Perovskite Solar Cells</title><author>Chen, Yu ; Yang, Zhou ; Wang, Shubo ; Zheng, Xiaojia ; Wu, Yihui ; Yuan, Ningyi ; Zhang, Wen‐Hua ; Liu, Shengzhong (Frank)</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4780-611bbede25834a8b3e03a5d0eab35d70439234877c84a887cb23b18e8dd399923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alignment</topic><topic>Carrier transport</topic><topic>Charge transfer</topic><topic>energy alignment</topic><topic>inverted perovskite solar cells</topic><topic>Materials science</topic><topic>mesoporous hole‐transporting layer</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>p‐type inorganic semiconductor</topic><topic>Solar cells</topic><topic>stability</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Yang, Zhou</creatorcontrib><creatorcontrib>Wang, Shubo</creatorcontrib><creatorcontrib>Zheng, Xiaojia</creatorcontrib><creatorcontrib>Wu, Yihui</creatorcontrib><creatorcontrib>Yuan, Ningyi</creatorcontrib><creatorcontrib>Zhang, Wen‐Hua</creatorcontrib><creatorcontrib>Liu, Shengzhong (Frank)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yu</au><au>Yang, Zhou</au><au>Wang, Shubo</au><au>Zheng, Xiaojia</au><au>Wu, Yihui</au><au>Yuan, Ningyi</au><au>Zhang, Wen‐Hua</au><au>Liu, Shengzhong (Frank)</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of an Inorganic Mesoporous Hole‐Transporting Layer for Highly Efficient and Stable Inverted Perovskite Solar Cells</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2018-12</date><risdate>2018</risdate><volume>30</volume><issue>52</issue><spage>e1805660</spage><epage>n/a</epage><pages>e1805660-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The unstable feature of the widely employed organic hole‐transporting materials (HTMs) (e.g., spiro‐MeOTAD) significantly limits the practical application of perovskite solar cells (PSCs). Therefore, it is desirable to design new structured PSCs with stable HTMs presenting excellent carrier extraction and transfer properties. This work demonstrates a new inverted PSC configuration. The new PSC has a graded band alignment and bilayered inorganic HTMs (i.e., compact NiOx and mesoporous CuGaO2). In comparison with planar‐structured PSCs, the mesoporous CuGaO2 can effectively extract holes from perovskite due to the increased contact area of the perovskite/HTM. The graded energy alignment constructed in the ultrathin compact NiOx, mesoporous CuGaO2, and perovskite can facilitate carrier transfer and depress charge recombination. As a result, the champion device based on the newly designed mesoscopic PSCs yields a stabilized efficiency of ≈20%, which is considered one of the best results for inverted PSCs with inorganic HTMs. Additionally, the unencapsulated PSC device retains more than 80% of its original efficiency when subjected to thermal aging at 85 °C for 1000 h in a nitrogen atmosphere, thus demonstrating superior thermal stability of the device. This study may pave a new avenue to rational design of highly efficient and stable PSCs. A graded bilayered inorganic hole‐transporting layer (including compact NiOx and mesoporous CuGaO2) is developed for inverted perovskite solar cells. The resulting devices demonstrate both high efficiency, with the champion one giving a stabilized efficiency of ≈20% and superior thermal stability with &gt;80% of the initial efficiency being retained subject to 1000 hours' thermal aging at 85 °C.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30387218</pmid><doi>10.1002/adma.201805660</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6676-6231</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2018-12, Vol.30 (52), p.e1805660-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2129531799
source Access via Wiley Online Library
subjects Alignment
Carrier transport
Charge transfer
energy alignment
inverted perovskite solar cells
Materials science
mesoporous hole‐transporting layer
Perovskites
Photovoltaic cells
p‐type inorganic semiconductor
Solar cells
stability
Thermal stability
title Design of an Inorganic Mesoporous Hole‐Transporting Layer for Highly Efficient and Stable Inverted Perovskite Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A53%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20an%20Inorganic%20Mesoporous%20Hole%E2%80%90Transporting%20Layer%20for%20Highly%20Efficient%20and%20Stable%20Inverted%20Perovskite%20Solar%20Cells&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Chen,%20Yu&rft.date=2018-12&rft.volume=30&rft.issue=52&rft.spage=e1805660&rft.epage=n/a&rft.pages=e1805660-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201805660&rft_dat=%3Cproquest_cross%3E2159348120%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159348120&rft_id=info:pmid/30387218&rfr_iscdi=true