Modeling substrate particle degradation by Bacillus coagulans biofilm

A mathematical model for solid particle degradation by an aerobic biofilm of Bacillus coagulans is developed. A moving biofilm is assumed to be present on the surface of the solid particle. Oxygen and glucose are assumed to be growth limiting. The depleting glucose concentration in the solid particl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 1997-09, Vol.61 (3), p.175-183
Hauptverfasser: Rajagopalan, S., Rockstraw, David A., Munson-McGee, Stuart H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 183
container_issue 3
container_start_page 175
container_title Bioresource technology
container_volume 61
creator Rajagopalan, S.
Rockstraw, David A.
Munson-McGee, Stuart H.
description A mathematical model for solid particle degradation by an aerobic biofilm of Bacillus coagulans is developed. A moving biofilm is assumed to be present on the surface of the solid particle. Oxygen and glucose are assumed to be growth limiting. The depleting glucose concentration in the solid particle is tracked as a function of time and it is found that the time taken for degradation of the particle is a function of particle size. Comparison with the experimental results found in literature on the particle size reduction by the action of Bacillus coagulans (Nandakumar et al., 1996) indicates that the model is able to predict the general trends of experimental data well. It is suggested that the diffusion of the enzyme glucoamylase plays a crucial role and is a more dominant determining factor than the variation of the composition of particles with size as suggested previously (Nandakumar et al., 1996) for the experimental observation that larger particles took more time to degrade than smaller particles. It is hoped that the results obtained will lead to a better understanding of the mechanism of particle degradation by aerobic biofilms and help in better design of biofilm reactors.
doi_str_mv 10.1016/S0960-8524(97)00087-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21289700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852497000874</els_id><sourcerecordid>314975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-d055986df70e0b92768b7af4bdf518e6f633e8dcbc6125b3c9f044203496c8283</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMoOF4eQehCRBfVJE1zWYnKeIERF-o6pMnJEMm0Y9IKvr2dC7N1dTbff_5zPoTOCL4mmPCbd6w4LmVN2aUSVxhjKUq2hyZEiqqkSvB9NNkhh-go568RqoigEzR97RzE0M6LPDS5T6aHYmlSH2yEwsE8GWf60LVF81vcGxtiHHJhOzMfomlz0YTOh7g4QQfexAyn23mMPh-nHw_P5ezt6eXhblbaSsm-dLiuleTOCwy4UVRw2QjjWeN8TSRwz6sKpLON5YTWTWWVx4xRXDHFraSyOkYXm73L1H0PkHu9CNlCHG-BbsiaEiqVGH_7DyScUUKYGMF6A9rU5ZzA62UKC5N-NcF6ZVev7eqVOq2EXtvVbMydbwtMtib6ZFob8i5MMeeY1iN2u8FgtPITIOlsA7QWXEhge-268E_RHwO6jec</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16421147</pqid></control><display><type>article</type><title>Modeling substrate particle degradation by Bacillus coagulans biofilm</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Rajagopalan, S. ; Rockstraw, David A. ; Munson-McGee, Stuart H.</creator><creatorcontrib>Rajagopalan, S. ; Rockstraw, David A. ; Munson-McGee, Stuart H.</creatorcontrib><description>A mathematical model for solid particle degradation by an aerobic biofilm of Bacillus coagulans is developed. A moving biofilm is assumed to be present on the surface of the solid particle. Oxygen and glucose are assumed to be growth limiting. The depleting glucose concentration in the solid particle is tracked as a function of time and it is found that the time taken for degradation of the particle is a function of particle size. Comparison with the experimental results found in literature on the particle size reduction by the action of Bacillus coagulans (Nandakumar et al., 1996) indicates that the model is able to predict the general trends of experimental data well. It is suggested that the diffusion of the enzyme glucoamylase plays a crucial role and is a more dominant determining factor than the variation of the composition of particles with size as suggested previously (Nandakumar et al., 1996) for the experimental observation that larger particles took more time to degrade than smaller particles. It is hoped that the results obtained will lead to a better understanding of the mechanism of particle degradation by aerobic biofilms and help in better design of biofilm reactors.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/S0960-8524(97)00087-4</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Bacteria ; Biodegradation ; Biofilms ; Biological and medical sciences ; Biotechnology ; degradation ; Diffusion in solids ; Enzyme engineering ; Enzymes ; Fermentation ; Fundamental and applied biological sciences. Psychology ; Glucose ; Mathematical models ; Methods. Procedures. Technologies ; Oxygen ; particle size ; Particle size analysis ; Particles (particulate matter) ; Production of selected enzymes ; solids ; SSF</subject><ispartof>Bioresource technology, 1997-09, Vol.61 (3), p.175-183</ispartof><rights>1997</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-d055986df70e0b92768b7af4bdf518e6f633e8dcbc6125b3c9f044203496c8283</citedby><cites>FETCH-LOGICAL-c398t-d055986df70e0b92768b7af4bdf518e6f633e8dcbc6125b3c9f044203496c8283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0960-8524(97)00087-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2066025$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rajagopalan, S.</creatorcontrib><creatorcontrib>Rockstraw, David A.</creatorcontrib><creatorcontrib>Munson-McGee, Stuart H.</creatorcontrib><title>Modeling substrate particle degradation by Bacillus coagulans biofilm</title><title>Bioresource technology</title><description>A mathematical model for solid particle degradation by an aerobic biofilm of Bacillus coagulans is developed. A moving biofilm is assumed to be present on the surface of the solid particle. Oxygen and glucose are assumed to be growth limiting. The depleting glucose concentration in the solid particle is tracked as a function of time and it is found that the time taken for degradation of the particle is a function of particle size. Comparison with the experimental results found in literature on the particle size reduction by the action of Bacillus coagulans (Nandakumar et al., 1996) indicates that the model is able to predict the general trends of experimental data well. It is suggested that the diffusion of the enzyme glucoamylase plays a crucial role and is a more dominant determining factor than the variation of the composition of particles with size as suggested previously (Nandakumar et al., 1996) for the experimental observation that larger particles took more time to degrade than smaller particles. It is hoped that the results obtained will lead to a better understanding of the mechanism of particle degradation by aerobic biofilms and help in better design of biofilm reactors.</description><subject>Bacteria</subject><subject>Biodegradation</subject><subject>Biofilms</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>degradation</subject><subject>Diffusion in solids</subject><subject>Enzyme engineering</subject><subject>Enzymes</subject><subject>Fermentation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glucose</subject><subject>Mathematical models</subject><subject>Methods. Procedures. Technologies</subject><subject>Oxygen</subject><subject>particle size</subject><subject>Particle size analysis</subject><subject>Particles (particulate matter)</subject><subject>Production of selected enzymes</subject><subject>solids</subject><subject>SSF</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxDAUhoMoOF4eQehCRBfVJE1zWYnKeIERF-o6pMnJEMm0Y9IKvr2dC7N1dTbff_5zPoTOCL4mmPCbd6w4LmVN2aUSVxhjKUq2hyZEiqqkSvB9NNkhh-go568RqoigEzR97RzE0M6LPDS5T6aHYmlSH2yEwsE8GWf60LVF81vcGxtiHHJhOzMfomlz0YTOh7g4QQfexAyn23mMPh-nHw_P5ezt6eXhblbaSsm-dLiuleTOCwy4UVRw2QjjWeN8TSRwz6sKpLON5YTWTWWVx4xRXDHFraSyOkYXm73L1H0PkHu9CNlCHG-BbsiaEiqVGH_7DyScUUKYGMF6A9rU5ZzA62UKC5N-NcF6ZVev7eqVOq2EXtvVbMydbwtMtib6ZFob8i5MMeeY1iN2u8FgtPITIOlsA7QWXEhge-268E_RHwO6jec</recordid><startdate>19970901</startdate><enddate>19970901</enddate><creator>Rajagopalan, S.</creator><creator>Rockstraw, David A.</creator><creator>Munson-McGee, Stuart H.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>19970901</creationdate><title>Modeling substrate particle degradation by Bacillus coagulans biofilm</title><author>Rajagopalan, S. ; Rockstraw, David A. ; Munson-McGee, Stuart H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-d055986df70e0b92768b7af4bdf518e6f633e8dcbc6125b3c9f044203496c8283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Bacteria</topic><topic>Biodegradation</topic><topic>Biofilms</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>degradation</topic><topic>Diffusion in solids</topic><topic>Enzyme engineering</topic><topic>Enzymes</topic><topic>Fermentation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glucose</topic><topic>Mathematical models</topic><topic>Methods. Procedures. Technologies</topic><topic>Oxygen</topic><topic>particle size</topic><topic>Particle size analysis</topic><topic>Particles (particulate matter)</topic><topic>Production of selected enzymes</topic><topic>solids</topic><topic>SSF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajagopalan, S.</creatorcontrib><creatorcontrib>Rockstraw, David A.</creatorcontrib><creatorcontrib>Munson-McGee, Stuart H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajagopalan, S.</au><au>Rockstraw, David A.</au><au>Munson-McGee, Stuart H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling substrate particle degradation by Bacillus coagulans biofilm</atitle><jtitle>Bioresource technology</jtitle><date>1997-09-01</date><risdate>1997</risdate><volume>61</volume><issue>3</issue><spage>175</spage><epage>183</epage><pages>175-183</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>A mathematical model for solid particle degradation by an aerobic biofilm of Bacillus coagulans is developed. A moving biofilm is assumed to be present on the surface of the solid particle. Oxygen and glucose are assumed to be growth limiting. The depleting glucose concentration in the solid particle is tracked as a function of time and it is found that the time taken for degradation of the particle is a function of particle size. Comparison with the experimental results found in literature on the particle size reduction by the action of Bacillus coagulans (Nandakumar et al., 1996) indicates that the model is able to predict the general trends of experimental data well. It is suggested that the diffusion of the enzyme glucoamylase plays a crucial role and is a more dominant determining factor than the variation of the composition of particles with size as suggested previously (Nandakumar et al., 1996) for the experimental observation that larger particles took more time to degrade than smaller particles. It is hoped that the results obtained will lead to a better understanding of the mechanism of particle degradation by aerobic biofilms and help in better design of biofilm reactors.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0960-8524(97)00087-4</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 1997-09, Vol.61 (3), p.175-183
issn 0960-8524
1873-2976
language eng
recordid cdi_proquest_miscellaneous_21289700
source Elsevier ScienceDirect Journals Complete
subjects Bacteria
Biodegradation
Biofilms
Biological and medical sciences
Biotechnology
degradation
Diffusion in solids
Enzyme engineering
Enzymes
Fermentation
Fundamental and applied biological sciences. Psychology
Glucose
Mathematical models
Methods. Procedures. Technologies
Oxygen
particle size
Particle size analysis
Particles (particulate matter)
Production of selected enzymes
solids
SSF
title Modeling substrate particle degradation by Bacillus coagulans biofilm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A08%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20substrate%20particle%20degradation%20by%20Bacillus%20coagulans%20biofilm&rft.jtitle=Bioresource%20technology&rft.au=Rajagopalan,%20S.&rft.date=1997-09-01&rft.volume=61&rft.issue=3&rft.spage=175&rft.epage=183&rft.pages=175-183&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/S0960-8524(97)00087-4&rft_dat=%3Cproquest_cross%3E314975%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16421147&rft_id=info:pmid/&rft_els_id=S0960852497000874&rfr_iscdi=true