Modeling substrate particle degradation by Bacillus coagulans biofilm
A mathematical model for solid particle degradation by an aerobic biofilm of Bacillus coagulans is developed. A moving biofilm is assumed to be present on the surface of the solid particle. Oxygen and glucose are assumed to be growth limiting. The depleting glucose concentration in the solid particl...
Gespeichert in:
Veröffentlicht in: | Bioresource technology 1997-09, Vol.61 (3), p.175-183 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 183 |
---|---|
container_issue | 3 |
container_start_page | 175 |
container_title | Bioresource technology |
container_volume | 61 |
creator | Rajagopalan, S. Rockstraw, David A. Munson-McGee, Stuart H. |
description | A mathematical model for solid particle degradation by an aerobic biofilm of
Bacillus coagulans is developed. A moving biofilm is assumed to be present on the surface of the solid particle. Oxygen and glucose are assumed to be growth limiting. The depleting glucose concentration in the solid particle is tracked as a function of time and it is found that the time taken for degradation of the particle is a function of particle size. Comparison with the experimental results found in literature on the particle size reduction by the action of
Bacillus coagulans (Nandakumar
et al., 1996) indicates that the model is able to predict the general trends of experimental data well. It is suggested that the diffusion of the enzyme glucoamylase plays a crucial role and is a more dominant determining factor than the variation of the composition of particles with size as suggested previously (Nandakumar
et al., 1996) for the experimental observation that larger particles took more time to degrade than smaller particles. It is hoped that the results obtained will lead to a better understanding of the mechanism of particle degradation by aerobic biofilms and help in better design of biofilm reactors. |
doi_str_mv | 10.1016/S0960-8524(97)00087-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21289700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852497000874</els_id><sourcerecordid>314975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-d055986df70e0b92768b7af4bdf518e6f633e8dcbc6125b3c9f044203496c8283</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMoOF4eQehCRBfVJE1zWYnKeIERF-o6pMnJEMm0Y9IKvr2dC7N1dTbff_5zPoTOCL4mmPCbd6w4LmVN2aUSVxhjKUq2hyZEiqqkSvB9NNkhh-go568RqoigEzR97RzE0M6LPDS5T6aHYmlSH2yEwsE8GWf60LVF81vcGxtiHHJhOzMfomlz0YTOh7g4QQfexAyn23mMPh-nHw_P5ezt6eXhblbaSsm-dLiuleTOCwy4UVRw2QjjWeN8TSRwz6sKpLON5YTWTWWVx4xRXDHFraSyOkYXm73L1H0PkHu9CNlCHG-BbsiaEiqVGH_7DyScUUKYGMF6A9rU5ZzA62UKC5N-NcF6ZVev7eqVOq2EXtvVbMydbwtMtib6ZFob8i5MMeeY1iN2u8FgtPITIOlsA7QWXEhge-268E_RHwO6jec</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16421147</pqid></control><display><type>article</type><title>Modeling substrate particle degradation by Bacillus coagulans biofilm</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Rajagopalan, S. ; Rockstraw, David A. ; Munson-McGee, Stuart H.</creator><creatorcontrib>Rajagopalan, S. ; Rockstraw, David A. ; Munson-McGee, Stuart H.</creatorcontrib><description>A mathematical model for solid particle degradation by an aerobic biofilm of
Bacillus coagulans is developed. A moving biofilm is assumed to be present on the surface of the solid particle. Oxygen and glucose are assumed to be growth limiting. The depleting glucose concentration in the solid particle is tracked as a function of time and it is found that the time taken for degradation of the particle is a function of particle size. Comparison with the experimental results found in literature on the particle size reduction by the action of
Bacillus coagulans (Nandakumar
et al., 1996) indicates that the model is able to predict the general trends of experimental data well. It is suggested that the diffusion of the enzyme glucoamylase plays a crucial role and is a more dominant determining factor than the variation of the composition of particles with size as suggested previously (Nandakumar
et al., 1996) for the experimental observation that larger particles took more time to degrade than smaller particles. It is hoped that the results obtained will lead to a better understanding of the mechanism of particle degradation by aerobic biofilms and help in better design of biofilm reactors.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/S0960-8524(97)00087-4</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Bacteria ; Biodegradation ; Biofilms ; Biological and medical sciences ; Biotechnology ; degradation ; Diffusion in solids ; Enzyme engineering ; Enzymes ; Fermentation ; Fundamental and applied biological sciences. Psychology ; Glucose ; Mathematical models ; Methods. Procedures. Technologies ; Oxygen ; particle size ; Particle size analysis ; Particles (particulate matter) ; Production of selected enzymes ; solids ; SSF</subject><ispartof>Bioresource technology, 1997-09, Vol.61 (3), p.175-183</ispartof><rights>1997</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-d055986df70e0b92768b7af4bdf518e6f633e8dcbc6125b3c9f044203496c8283</citedby><cites>FETCH-LOGICAL-c398t-d055986df70e0b92768b7af4bdf518e6f633e8dcbc6125b3c9f044203496c8283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0960-8524(97)00087-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2066025$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rajagopalan, S.</creatorcontrib><creatorcontrib>Rockstraw, David A.</creatorcontrib><creatorcontrib>Munson-McGee, Stuart H.</creatorcontrib><title>Modeling substrate particle degradation by Bacillus coagulans biofilm</title><title>Bioresource technology</title><description>A mathematical model for solid particle degradation by an aerobic biofilm of
Bacillus coagulans is developed. A moving biofilm is assumed to be present on the surface of the solid particle. Oxygen and glucose are assumed to be growth limiting. The depleting glucose concentration in the solid particle is tracked as a function of time and it is found that the time taken for degradation of the particle is a function of particle size. Comparison with the experimental results found in literature on the particle size reduction by the action of
Bacillus coagulans (Nandakumar
et al., 1996) indicates that the model is able to predict the general trends of experimental data well. It is suggested that the diffusion of the enzyme glucoamylase plays a crucial role and is a more dominant determining factor than the variation of the composition of particles with size as suggested previously (Nandakumar
et al., 1996) for the experimental observation that larger particles took more time to degrade than smaller particles. It is hoped that the results obtained will lead to a better understanding of the mechanism of particle degradation by aerobic biofilms and help in better design of biofilm reactors.</description><subject>Bacteria</subject><subject>Biodegradation</subject><subject>Biofilms</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>degradation</subject><subject>Diffusion in solids</subject><subject>Enzyme engineering</subject><subject>Enzymes</subject><subject>Fermentation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glucose</subject><subject>Mathematical models</subject><subject>Methods. Procedures. Technologies</subject><subject>Oxygen</subject><subject>particle size</subject><subject>Particle size analysis</subject><subject>Particles (particulate matter)</subject><subject>Production of selected enzymes</subject><subject>solids</subject><subject>SSF</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxDAUhoMoOF4eQehCRBfVJE1zWYnKeIERF-o6pMnJEMm0Y9IKvr2dC7N1dTbff_5zPoTOCL4mmPCbd6w4LmVN2aUSVxhjKUq2hyZEiqqkSvB9NNkhh-go568RqoigEzR97RzE0M6LPDS5T6aHYmlSH2yEwsE8GWf60LVF81vcGxtiHHJhOzMfomlz0YTOh7g4QQfexAyn23mMPh-nHw_P5ezt6eXhblbaSsm-dLiuleTOCwy4UVRw2QjjWeN8TSRwz6sKpLON5YTWTWWVx4xRXDHFraSyOkYXm73L1H0PkHu9CNlCHG-BbsiaEiqVGH_7DyScUUKYGMF6A9rU5ZzA62UKC5N-NcF6ZVev7eqVOq2EXtvVbMydbwtMtib6ZFob8i5MMeeY1iN2u8FgtPITIOlsA7QWXEhge-268E_RHwO6jec</recordid><startdate>19970901</startdate><enddate>19970901</enddate><creator>Rajagopalan, S.</creator><creator>Rockstraw, David A.</creator><creator>Munson-McGee, Stuart H.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>19970901</creationdate><title>Modeling substrate particle degradation by Bacillus coagulans biofilm</title><author>Rajagopalan, S. ; Rockstraw, David A. ; Munson-McGee, Stuart H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-d055986df70e0b92768b7af4bdf518e6f633e8dcbc6125b3c9f044203496c8283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Bacteria</topic><topic>Biodegradation</topic><topic>Biofilms</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>degradation</topic><topic>Diffusion in solids</topic><topic>Enzyme engineering</topic><topic>Enzymes</topic><topic>Fermentation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glucose</topic><topic>Mathematical models</topic><topic>Methods. Procedures. Technologies</topic><topic>Oxygen</topic><topic>particle size</topic><topic>Particle size analysis</topic><topic>Particles (particulate matter)</topic><topic>Production of selected enzymes</topic><topic>solids</topic><topic>SSF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajagopalan, S.</creatorcontrib><creatorcontrib>Rockstraw, David A.</creatorcontrib><creatorcontrib>Munson-McGee, Stuart H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajagopalan, S.</au><au>Rockstraw, David A.</au><au>Munson-McGee, Stuart H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling substrate particle degradation by Bacillus coagulans biofilm</atitle><jtitle>Bioresource technology</jtitle><date>1997-09-01</date><risdate>1997</risdate><volume>61</volume><issue>3</issue><spage>175</spage><epage>183</epage><pages>175-183</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>A mathematical model for solid particle degradation by an aerobic biofilm of
Bacillus coagulans is developed. A moving biofilm is assumed to be present on the surface of the solid particle. Oxygen and glucose are assumed to be growth limiting. The depleting glucose concentration in the solid particle is tracked as a function of time and it is found that the time taken for degradation of the particle is a function of particle size. Comparison with the experimental results found in literature on the particle size reduction by the action of
Bacillus coagulans (Nandakumar
et al., 1996) indicates that the model is able to predict the general trends of experimental data well. It is suggested that the diffusion of the enzyme glucoamylase plays a crucial role and is a more dominant determining factor than the variation of the composition of particles with size as suggested previously (Nandakumar
et al., 1996) for the experimental observation that larger particles took more time to degrade than smaller particles. It is hoped that the results obtained will lead to a better understanding of the mechanism of particle degradation by aerobic biofilms and help in better design of biofilm reactors.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0960-8524(97)00087-4</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-8524 |
ispartof | Bioresource technology, 1997-09, Vol.61 (3), p.175-183 |
issn | 0960-8524 1873-2976 |
language | eng |
recordid | cdi_proquest_miscellaneous_21289700 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Bacteria Biodegradation Biofilms Biological and medical sciences Biotechnology degradation Diffusion in solids Enzyme engineering Enzymes Fermentation Fundamental and applied biological sciences. Psychology Glucose Mathematical models Methods. Procedures. Technologies Oxygen particle size Particle size analysis Particles (particulate matter) Production of selected enzymes solids SSF |
title | Modeling substrate particle degradation by Bacillus coagulans biofilm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A08%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20substrate%20particle%20degradation%20by%20Bacillus%20coagulans%20biofilm&rft.jtitle=Bioresource%20technology&rft.au=Rajagopalan,%20S.&rft.date=1997-09-01&rft.volume=61&rft.issue=3&rft.spage=175&rft.epage=183&rft.pages=175-183&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/S0960-8524(97)00087-4&rft_dat=%3Cproquest_cross%3E314975%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16421147&rft_id=info:pmid/&rft_els_id=S0960852497000874&rfr_iscdi=true |