Insights into the Electrocatalytic Hydrogen Evolution Reaction Mechanism on Two‐Dimensional Transition‐Metal Carbonitrides (MXene)
Developing highly active, non‐noble‐metal H2‐evolution catalysts is appealing yet still remains a great challenge in the field of electrocatalytic and photocatalytic H2 production. In this work, high quality transition‐metal carbonitrides M3CN (MXene) are investigated using well‐defined density func...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2018-12, Vol.24 (69), p.18479-18486 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18486 |
---|---|
container_issue | 69 |
container_start_page | 18479 |
container_title | Chemistry : a European journal |
container_volume | 24 |
creator | Huang, Bin Zhou, Naigen Chen, Xingzhu Ong, Wee‐Jun Li, Neng |
description | Developing highly active, non‐noble‐metal H2‐evolution catalysts is appealing yet still remains a great challenge in the field of electrocatalytic and photocatalytic H2 production. In this work, high quality transition‐metal carbonitrides M3CN (MXene) are investigated using well‐defined density functional theory (DFT) calculations. The structural configurations, H‐adsorption free energy (ΔGH) and charge transfer for bare, surface‐terminated and transition‐metal (TM)‐modified M3CNO2 are systematically studied. The calculated results indicate that all bare transition metal carbonitrides exhibit strong binding between H atom and catalysts. In addition, only Ti3CNO2 and Nb3CNO2 have the potential to be HER active catalysts based on the ΔGH results. In an attempt to overcome poor HER activity limitations, we apply O as well as OH mixed groups and TMs modification on the Ti3CNO2 surface for tuning HER activity, and a significant improvement of HER activity is observed. Overall, this work presents in‐depth investigations for transition‐metal carbonitrides (MXene) and opens up new designs for robust metal carbonitrides as noble‐metal‐free cocatalysts for highly efficient and low‐cost MXene‐based nanocomposites for water splitting applications.
High quality transition‐metal carbonitrides M3CN (MXene) are investigated using well‐defined density functional theory (DFT) calculations. The structural configurations, H‐adsorption free energy (ΔGH) and charge transfer for bare, surface‐terminated and transition‐metal (TM)‐modified M3CNO2 are systematically studied. |
doi_str_mv | 10.1002/chem.201804686 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2127953435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2153563173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4106-fe9470de88ee2a180b157c71347bf352b4e9ed7c294d0f558faed5fc45893c003</originalsourceid><addsrcrecordid>eNqFkU1LKzEUhoNc0d7q1qUE7kYXU5PJZD6WUuut0CJIBXdDJnPGRmYSTTJKd65c3994f4mp9QPcuMoJ5zkPvLwIHVAyooTEJ3IJ3SgmNCdJmqdbaEB5TCOWpfwXGpAiyaKUs2IX_XbujhBSpIztoF1GWE7zlA7Qy4V26nbpHVbaG-yXgCctSG-NFF60K68knq5qa25B48mjaXuvjMZXIOTbMAe5FFq5DofP4sn8f_53pjoIUqNFixdWhHFNhsUcghGPha2MVt6qGhw-mt-AhuM9tN2I1sH--ztE1-eTxXgazS7_XoxPZ5FMKEmjBkIiUkOeA8QihK4oz2RGWZJVDeNxlUABdSbjIqlJw3neCKh5IxOeF0wSwoboaOO9t-ahB-fLTjkJbSs0mN6VMY2zgrOE8YD--Ybemd6GUGuKM54ymrFAjTaUtMY5C015b1Un7KqkpFw3VK4bKj8bCgeH79q-6qD-xD8qCUCxAZ5UC6sfdOV4Opl_yV8BaW2g0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2153563173</pqid></control><display><type>article</type><title>Insights into the Electrocatalytic Hydrogen Evolution Reaction Mechanism on Two‐Dimensional Transition‐Metal Carbonitrides (MXene)</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Huang, Bin ; Zhou, Naigen ; Chen, Xingzhu ; Ong, Wee‐Jun ; Li, Neng</creator><creatorcontrib>Huang, Bin ; Zhou, Naigen ; Chen, Xingzhu ; Ong, Wee‐Jun ; Li, Neng</creatorcontrib><description>Developing highly active, non‐noble‐metal H2‐evolution catalysts is appealing yet still remains a great challenge in the field of electrocatalytic and photocatalytic H2 production. In this work, high quality transition‐metal carbonitrides M3CN (MXene) are investigated using well‐defined density functional theory (DFT) calculations. The structural configurations, H‐adsorption free energy (ΔGH) and charge transfer for bare, surface‐terminated and transition‐metal (TM)‐modified M3CNO2 are systematically studied. The calculated results indicate that all bare transition metal carbonitrides exhibit strong binding between H atom and catalysts. In addition, only Ti3CNO2 and Nb3CNO2 have the potential to be HER active catalysts based on the ΔGH results. In an attempt to overcome poor HER activity limitations, we apply O as well as OH mixed groups and TMs modification on the Ti3CNO2 surface for tuning HER activity, and a significant improvement of HER activity is observed. Overall, this work presents in‐depth investigations for transition‐metal carbonitrides (MXene) and opens up new designs for robust metal carbonitrides as noble‐metal‐free cocatalysts for highly efficient and low‐cost MXene‐based nanocomposites for water splitting applications.
High quality transition‐metal carbonitrides M3CN (MXene) are investigated using well‐defined density functional theory (DFT) calculations. The structural configurations, H‐adsorption free energy (ΔGH) and charge transfer for bare, surface‐terminated and transition‐metal (TM)‐modified M3CNO2 are systematically studied.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201804686</identifier><identifier>PMID: 30381861</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Carbon nitride ; Catalysis ; Catalysts ; Charge transfer ; Chemistry ; density functional calculations ; Density functional theory ; electrocatalysis ; Energy charge ; Free energy ; hydrogen evolution reaction ; Hydrogen evolution reactions ; Hydrogen production ; Mathematical analysis ; Metals ; MXene ; MXenes ; Nanocomposites ; Reaction mechanisms ; Surface charge ; transition metal carbonitrides ; Transition metals ; Water splitting</subject><ispartof>Chemistry : a European journal, 2018-12, Vol.24 (69), p.18479-18486</ispartof><rights>2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4106-fe9470de88ee2a180b157c71347bf352b4e9ed7c294d0f558faed5fc45893c003</citedby><cites>FETCH-LOGICAL-c4106-fe9470de88ee2a180b157c71347bf352b4e9ed7c294d0f558faed5fc45893c003</cites><orcidid>0000-0002-5124-1934</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201804686$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201804686$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30381861$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Bin</creatorcontrib><creatorcontrib>Zhou, Naigen</creatorcontrib><creatorcontrib>Chen, Xingzhu</creatorcontrib><creatorcontrib>Ong, Wee‐Jun</creatorcontrib><creatorcontrib>Li, Neng</creatorcontrib><title>Insights into the Electrocatalytic Hydrogen Evolution Reaction Mechanism on Two‐Dimensional Transition‐Metal Carbonitrides (MXene)</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>Developing highly active, non‐noble‐metal H2‐evolution catalysts is appealing yet still remains a great challenge in the field of electrocatalytic and photocatalytic H2 production. In this work, high quality transition‐metal carbonitrides M3CN (MXene) are investigated using well‐defined density functional theory (DFT) calculations. The structural configurations, H‐adsorption free energy (ΔGH) and charge transfer for bare, surface‐terminated and transition‐metal (TM)‐modified M3CNO2 are systematically studied. The calculated results indicate that all bare transition metal carbonitrides exhibit strong binding between H atom and catalysts. In addition, only Ti3CNO2 and Nb3CNO2 have the potential to be HER active catalysts based on the ΔGH results. In an attempt to overcome poor HER activity limitations, we apply O as well as OH mixed groups and TMs modification on the Ti3CNO2 surface for tuning HER activity, and a significant improvement of HER activity is observed. Overall, this work presents in‐depth investigations for transition‐metal carbonitrides (MXene) and opens up new designs for robust metal carbonitrides as noble‐metal‐free cocatalysts for highly efficient and low‐cost MXene‐based nanocomposites for water splitting applications.
High quality transition‐metal carbonitrides M3CN (MXene) are investigated using well‐defined density functional theory (DFT) calculations. The structural configurations, H‐adsorption free energy (ΔGH) and charge transfer for bare, surface‐terminated and transition‐metal (TM)‐modified M3CNO2 are systematically studied.</description><subject>Carbon nitride</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Charge transfer</subject><subject>Chemistry</subject><subject>density functional calculations</subject><subject>Density functional theory</subject><subject>electrocatalysis</subject><subject>Energy charge</subject><subject>Free energy</subject><subject>hydrogen evolution reaction</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen production</subject><subject>Mathematical analysis</subject><subject>Metals</subject><subject>MXene</subject><subject>MXenes</subject><subject>Nanocomposites</subject><subject>Reaction mechanisms</subject><subject>Surface charge</subject><subject>transition metal carbonitrides</subject><subject>Transition metals</subject><subject>Water splitting</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LKzEUhoNc0d7q1qUE7kYXU5PJZD6WUuut0CJIBXdDJnPGRmYSTTJKd65c3994f4mp9QPcuMoJ5zkPvLwIHVAyooTEJ3IJ3SgmNCdJmqdbaEB5TCOWpfwXGpAiyaKUs2IX_XbujhBSpIztoF1GWE7zlA7Qy4V26nbpHVbaG-yXgCctSG-NFF60K68knq5qa25B48mjaXuvjMZXIOTbMAe5FFq5DofP4sn8f_53pjoIUqNFixdWhHFNhsUcghGPha2MVt6qGhw-mt-AhuM9tN2I1sH--ztE1-eTxXgazS7_XoxPZ5FMKEmjBkIiUkOeA8QihK4oz2RGWZJVDeNxlUABdSbjIqlJw3neCKh5IxOeF0wSwoboaOO9t-ahB-fLTjkJbSs0mN6VMY2zgrOE8YD--Ybemd6GUGuKM54ymrFAjTaUtMY5C015b1Un7KqkpFw3VK4bKj8bCgeH79q-6qD-xD8qCUCxAZ5UC6sfdOV4Opl_yV8BaW2g0Q</recordid><startdate>20181210</startdate><enddate>20181210</enddate><creator>Huang, Bin</creator><creator>Zhou, Naigen</creator><creator>Chen, Xingzhu</creator><creator>Ong, Wee‐Jun</creator><creator>Li, Neng</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5124-1934</orcidid></search><sort><creationdate>20181210</creationdate><title>Insights into the Electrocatalytic Hydrogen Evolution Reaction Mechanism on Two‐Dimensional Transition‐Metal Carbonitrides (MXene)</title><author>Huang, Bin ; Zhou, Naigen ; Chen, Xingzhu ; Ong, Wee‐Jun ; Li, Neng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4106-fe9470de88ee2a180b157c71347bf352b4e9ed7c294d0f558faed5fc45893c003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carbon nitride</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Charge transfer</topic><topic>Chemistry</topic><topic>density functional calculations</topic><topic>Density functional theory</topic><topic>electrocatalysis</topic><topic>Energy charge</topic><topic>Free energy</topic><topic>hydrogen evolution reaction</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen production</topic><topic>Mathematical analysis</topic><topic>Metals</topic><topic>MXene</topic><topic>MXenes</topic><topic>Nanocomposites</topic><topic>Reaction mechanisms</topic><topic>Surface charge</topic><topic>transition metal carbonitrides</topic><topic>Transition metals</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Bin</creatorcontrib><creatorcontrib>Zhou, Naigen</creatorcontrib><creatorcontrib>Chen, Xingzhu</creatorcontrib><creatorcontrib>Ong, Wee‐Jun</creatorcontrib><creatorcontrib>Li, Neng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Bin</au><au>Zhou, Naigen</au><au>Chen, Xingzhu</au><au>Ong, Wee‐Jun</au><au>Li, Neng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into the Electrocatalytic Hydrogen Evolution Reaction Mechanism on Two‐Dimensional Transition‐Metal Carbonitrides (MXene)</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2018-12-10</date><risdate>2018</risdate><volume>24</volume><issue>69</issue><spage>18479</spage><epage>18486</epage><pages>18479-18486</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>Developing highly active, non‐noble‐metal H2‐evolution catalysts is appealing yet still remains a great challenge in the field of electrocatalytic and photocatalytic H2 production. In this work, high quality transition‐metal carbonitrides M3CN (MXene) are investigated using well‐defined density functional theory (DFT) calculations. The structural configurations, H‐adsorption free energy (ΔGH) and charge transfer for bare, surface‐terminated and transition‐metal (TM)‐modified M3CNO2 are systematically studied. The calculated results indicate that all bare transition metal carbonitrides exhibit strong binding between H atom and catalysts. In addition, only Ti3CNO2 and Nb3CNO2 have the potential to be HER active catalysts based on the ΔGH results. In an attempt to overcome poor HER activity limitations, we apply O as well as OH mixed groups and TMs modification on the Ti3CNO2 surface for tuning HER activity, and a significant improvement of HER activity is observed. Overall, this work presents in‐depth investigations for transition‐metal carbonitrides (MXene) and opens up new designs for robust metal carbonitrides as noble‐metal‐free cocatalysts for highly efficient and low‐cost MXene‐based nanocomposites for water splitting applications.
High quality transition‐metal carbonitrides M3CN (MXene) are investigated using well‐defined density functional theory (DFT) calculations. The structural configurations, H‐adsorption free energy (ΔGH) and charge transfer for bare, surface‐terminated and transition‐metal (TM)‐modified M3CNO2 are systematically studied.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30381861</pmid><doi>10.1002/chem.201804686</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5124-1934</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2018-12, Vol.24 (69), p.18479-18486 |
issn | 0947-6539 1521-3765 |
language | eng |
recordid | cdi_proquest_miscellaneous_2127953435 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Carbon nitride Catalysis Catalysts Charge transfer Chemistry density functional calculations Density functional theory electrocatalysis Energy charge Free energy hydrogen evolution reaction Hydrogen evolution reactions Hydrogen production Mathematical analysis Metals MXene MXenes Nanocomposites Reaction mechanisms Surface charge transition metal carbonitrides Transition metals Water splitting |
title | Insights into the Electrocatalytic Hydrogen Evolution Reaction Mechanism on Two‐Dimensional Transition‐Metal Carbonitrides (MXene) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A49%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20the%20Electrocatalytic%20Hydrogen%20Evolution%20Reaction%20Mechanism%20on%20Two%E2%80%90Dimensional%20Transition%E2%80%90Metal%20Carbonitrides%20(MXene)&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Huang,%20Bin&rft.date=2018-12-10&rft.volume=24&rft.issue=69&rft.spage=18479&rft.epage=18486&rft.pages=18479-18486&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201804686&rft_dat=%3Cproquest_cross%3E2153563173%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2153563173&rft_id=info:pmid/30381861&rfr_iscdi=true |