Shock wave propagation, plasticity, and void collapse in open-cell nanoporous Ta

We systematically investigate the wave propagation, plasticity and void collapse, as well as the effects of porosity, specific surface area and impact velocity, in a set of open-cell nanoporous Ta, during shock compression, via performing large-scale non-equilibrium molecular dynamics simulations. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2018-11, Vol.20 (44), p.28039-28048
Hauptverfasser: Tang, J F, Xiao, J C, Deng, L, Li, W, Zhang, X M, Wang, L, Xiao, S F, Deng, H Q, Hu, W Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28048
container_issue 44
container_start_page 28039
container_title Physical chemistry chemical physics : PCCP
container_volume 20
creator Tang, J F
Xiao, J C
Deng, L
Li, W
Zhang, X M
Wang, L
Xiao, S F
Deng, H Q
Hu, W Y
description We systematically investigate the wave propagation, plasticity and void collapse, as well as the effects of porosity, specific surface area and impact velocity, in a set of open-cell nanoporous Ta, during shock compression, via performing large-scale non-equilibrium molecular dynamics simulations. The shock wave propagation presents an impedance, sensitive to porosity, but not to specific surface area. Such surprising phenomena are due to the similar sensitivities in density and stress variations to porosity or specific surface area. Upon impact, shock front shapes change from ramped to steep ones, with increasing porosity, specific surface area or impact velocity, owing to the transition from the heterogeneous to homogeneous plasticity along transverse directions. This transition of plasticity arises by (i) the strong impedance on large deformation bands as porosity increases; and (ii) the transition from deformation twinning to dislocation slips, and to amorphization, as the specific surface area or impact velocity increases. Shock-induced plasticity, including their nucleation, growth and interactions, also facilitates the collapse of voids.
doi_str_mv 10.1039/c8cp05126g
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2127951868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132696424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-7b008001ade19eba01470120c42f8551eae5781e8bbaa3b5c94da56c43d665f83</originalsourceid><addsrcrecordid>eNpdkE9LwzAYh4Mobk4vfgAJeBFZNWn-ND1K0SkMHDjP5W2azs4uqU072be3c3MHT-97ePjx8CB0SckdJSy-10rXRNBQLo7QkHLJgpgofnz4IzlAZ94vCSFUUHaKBowwxYgQQzR7-3D6E3_D2uC6cTUsoC2dHeO6At-Wumw3Yww2x2tX5li7qoLaG1xa7GpjA22qCluwrnaN6zyewzk6KaDy5mJ_R-j96XGePAfT18lL8jANNFO0DaKMENX7QG5obDIglEeEhkTzsFBCUANGRIoalWUALBM65jkIqTnLpRSFYiN0s9vtrb8649t0VfqtDljTm6QhDaNYUCW36PU_dOm6xvZ2PcVCGUse8p663VG6cd43pkjrplxBs0kpSbed00Qls9_Okx6-2k922crkB_QvLPsBn4B25g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132696424</pqid></control><display><type>article</type><title>Shock wave propagation, plasticity, and void collapse in open-cell nanoporous Ta</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Tang, J F ; Xiao, J C ; Deng, L ; Li, W ; Zhang, X M ; Wang, L ; Xiao, S F ; Deng, H Q ; Hu, W Y</creator><creatorcontrib>Tang, J F ; Xiao, J C ; Deng, L ; Li, W ; Zhang, X M ; Wang, L ; Xiao, S F ; Deng, H Q ; Hu, W Y</creatorcontrib><description>We systematically investigate the wave propagation, plasticity and void collapse, as well as the effects of porosity, specific surface area and impact velocity, in a set of open-cell nanoporous Ta, during shock compression, via performing large-scale non-equilibrium molecular dynamics simulations. The shock wave propagation presents an impedance, sensitive to porosity, but not to specific surface area. Such surprising phenomena are due to the similar sensitivities in density and stress variations to porosity or specific surface area. Upon impact, shock front shapes change from ramped to steep ones, with increasing porosity, specific surface area or impact velocity, owing to the transition from the heterogeneous to homogeneous plasticity along transverse directions. This transition of plasticity arises by (i) the strong impedance on large deformation bands as porosity increases; and (ii) the transition from deformation twinning to dislocation slips, and to amorphization, as the specific surface area or impact velocity increases. Shock-induced plasticity, including their nucleation, growth and interactions, also facilitates the collapse of voids.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c8cp05126g</identifier><identifier>PMID: 30383055</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Amorphization ; Collapse ; Deformation ; Dislocations ; Impact velocity ; Impedance ; Longitudinal waves ; Molecular dynamics ; Nucleation ; Plastic properties ; Porosity ; Propagation ; Shock wave propagation ; Shock waves ; Specific surface ; Surface area ; Twinning</subject><ispartof>Physical chemistry chemical physics : PCCP, 2018-11, Vol.20 (44), p.28039-28048</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-7b008001ade19eba01470120c42f8551eae5781e8bbaa3b5c94da56c43d665f83</citedby><cites>FETCH-LOGICAL-c381t-7b008001ade19eba01470120c42f8551eae5781e8bbaa3b5c94da56c43d665f83</cites><orcidid>0000-0002-9999-5081 ; 0000-0002-0133-9474 ; 0000-0003-4866-3527 ; 0000-0003-4484-9260</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30383055$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, J F</creatorcontrib><creatorcontrib>Xiao, J C</creatorcontrib><creatorcontrib>Deng, L</creatorcontrib><creatorcontrib>Li, W</creatorcontrib><creatorcontrib>Zhang, X M</creatorcontrib><creatorcontrib>Wang, L</creatorcontrib><creatorcontrib>Xiao, S F</creatorcontrib><creatorcontrib>Deng, H Q</creatorcontrib><creatorcontrib>Hu, W Y</creatorcontrib><title>Shock wave propagation, plasticity, and void collapse in open-cell nanoporous Ta</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>We systematically investigate the wave propagation, plasticity and void collapse, as well as the effects of porosity, specific surface area and impact velocity, in a set of open-cell nanoporous Ta, during shock compression, via performing large-scale non-equilibrium molecular dynamics simulations. The shock wave propagation presents an impedance, sensitive to porosity, but not to specific surface area. Such surprising phenomena are due to the similar sensitivities in density and stress variations to porosity or specific surface area. Upon impact, shock front shapes change from ramped to steep ones, with increasing porosity, specific surface area or impact velocity, owing to the transition from the heterogeneous to homogeneous plasticity along transverse directions. This transition of plasticity arises by (i) the strong impedance on large deformation bands as porosity increases; and (ii) the transition from deformation twinning to dislocation slips, and to amorphization, as the specific surface area or impact velocity increases. Shock-induced plasticity, including their nucleation, growth and interactions, also facilitates the collapse of voids.</description><subject>Amorphization</subject><subject>Collapse</subject><subject>Deformation</subject><subject>Dislocations</subject><subject>Impact velocity</subject><subject>Impedance</subject><subject>Longitudinal waves</subject><subject>Molecular dynamics</subject><subject>Nucleation</subject><subject>Plastic properties</subject><subject>Porosity</subject><subject>Propagation</subject><subject>Shock wave propagation</subject><subject>Shock waves</subject><subject>Specific surface</subject><subject>Surface area</subject><subject>Twinning</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkE9LwzAYh4Mobk4vfgAJeBFZNWn-ND1K0SkMHDjP5W2azs4uqU072be3c3MHT-97ePjx8CB0SckdJSy-10rXRNBQLo7QkHLJgpgofnz4IzlAZ94vCSFUUHaKBowwxYgQQzR7-3D6E3_D2uC6cTUsoC2dHeO6At-Wumw3Yww2x2tX5li7qoLaG1xa7GpjA22qCluwrnaN6zyewzk6KaDy5mJ_R-j96XGePAfT18lL8jANNFO0DaKMENX7QG5obDIglEeEhkTzsFBCUANGRIoalWUALBM65jkIqTnLpRSFYiN0s9vtrb8649t0VfqtDljTm6QhDaNYUCW36PU_dOm6xvZ2PcVCGUse8p663VG6cd43pkjrplxBs0kpSbed00Qls9_Okx6-2k922crkB_QvLPsBn4B25g</recordid><startdate>20181114</startdate><enddate>20181114</enddate><creator>Tang, J F</creator><creator>Xiao, J C</creator><creator>Deng, L</creator><creator>Li, W</creator><creator>Zhang, X M</creator><creator>Wang, L</creator><creator>Xiao, S F</creator><creator>Deng, H Q</creator><creator>Hu, W Y</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9999-5081</orcidid><orcidid>https://orcid.org/0000-0002-0133-9474</orcidid><orcidid>https://orcid.org/0000-0003-4866-3527</orcidid><orcidid>https://orcid.org/0000-0003-4484-9260</orcidid></search><sort><creationdate>20181114</creationdate><title>Shock wave propagation, plasticity, and void collapse in open-cell nanoporous Ta</title><author>Tang, J F ; Xiao, J C ; Deng, L ; Li, W ; Zhang, X M ; Wang, L ; Xiao, S F ; Deng, H Q ; Hu, W Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-7b008001ade19eba01470120c42f8551eae5781e8bbaa3b5c94da56c43d665f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amorphization</topic><topic>Collapse</topic><topic>Deformation</topic><topic>Dislocations</topic><topic>Impact velocity</topic><topic>Impedance</topic><topic>Longitudinal waves</topic><topic>Molecular dynamics</topic><topic>Nucleation</topic><topic>Plastic properties</topic><topic>Porosity</topic><topic>Propagation</topic><topic>Shock wave propagation</topic><topic>Shock waves</topic><topic>Specific surface</topic><topic>Surface area</topic><topic>Twinning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, J F</creatorcontrib><creatorcontrib>Xiao, J C</creatorcontrib><creatorcontrib>Deng, L</creatorcontrib><creatorcontrib>Li, W</creatorcontrib><creatorcontrib>Zhang, X M</creatorcontrib><creatorcontrib>Wang, L</creatorcontrib><creatorcontrib>Xiao, S F</creatorcontrib><creatorcontrib>Deng, H Q</creatorcontrib><creatorcontrib>Hu, W Y</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, J F</au><au>Xiao, J C</au><au>Deng, L</au><au>Li, W</au><au>Zhang, X M</au><au>Wang, L</au><au>Xiao, S F</au><au>Deng, H Q</au><au>Hu, W Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shock wave propagation, plasticity, and void collapse in open-cell nanoporous Ta</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2018-11-14</date><risdate>2018</risdate><volume>20</volume><issue>44</issue><spage>28039</spage><epage>28048</epage><pages>28039-28048</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>We systematically investigate the wave propagation, plasticity and void collapse, as well as the effects of porosity, specific surface area and impact velocity, in a set of open-cell nanoporous Ta, during shock compression, via performing large-scale non-equilibrium molecular dynamics simulations. The shock wave propagation presents an impedance, sensitive to porosity, but not to specific surface area. Such surprising phenomena are due to the similar sensitivities in density and stress variations to porosity or specific surface area. Upon impact, shock front shapes change from ramped to steep ones, with increasing porosity, specific surface area or impact velocity, owing to the transition from the heterogeneous to homogeneous plasticity along transverse directions. This transition of plasticity arises by (i) the strong impedance on large deformation bands as porosity increases; and (ii) the transition from deformation twinning to dislocation slips, and to amorphization, as the specific surface area or impact velocity increases. Shock-induced plasticity, including their nucleation, growth and interactions, also facilitates the collapse of voids.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30383055</pmid><doi>10.1039/c8cp05126g</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9999-5081</orcidid><orcidid>https://orcid.org/0000-0002-0133-9474</orcidid><orcidid>https://orcid.org/0000-0003-4866-3527</orcidid><orcidid>https://orcid.org/0000-0003-4484-9260</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2018-11, Vol.20 (44), p.28039-28048
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_2127951868
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Amorphization
Collapse
Deformation
Dislocations
Impact velocity
Impedance
Longitudinal waves
Molecular dynamics
Nucleation
Plastic properties
Porosity
Propagation
Shock wave propagation
Shock waves
Specific surface
Surface area
Twinning
title Shock wave propagation, plasticity, and void collapse in open-cell nanoporous Ta
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A24%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shock%20wave%20propagation,%20plasticity,%20and%20void%20collapse%20in%20open-cell%20nanoporous%20Ta&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Tang,%20J%20F&rft.date=2018-11-14&rft.volume=20&rft.issue=44&rft.spage=28039&rft.epage=28048&rft.pages=28039-28048&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c8cp05126g&rft_dat=%3Cproquest_cross%3E2132696424%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132696424&rft_id=info:pmid/30383055&rfr_iscdi=true