Shock wave propagation, plasticity, and void collapse in open-cell nanoporous Ta
We systematically investigate the wave propagation, plasticity and void collapse, as well as the effects of porosity, specific surface area and impact velocity, in a set of open-cell nanoporous Ta, during shock compression, via performing large-scale non-equilibrium molecular dynamics simulations. T...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2018-11, Vol.20 (44), p.28039-28048 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28048 |
---|---|
container_issue | 44 |
container_start_page | 28039 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 20 |
creator | Tang, J F Xiao, J C Deng, L Li, W Zhang, X M Wang, L Xiao, S F Deng, H Q Hu, W Y |
description | We systematically investigate the wave propagation, plasticity and void collapse, as well as the effects of porosity, specific surface area and impact velocity, in a set of open-cell nanoporous Ta, during shock compression, via performing large-scale non-equilibrium molecular dynamics simulations. The shock wave propagation presents an impedance, sensitive to porosity, but not to specific surface area. Such surprising phenomena are due to the similar sensitivities in density and stress variations to porosity or specific surface area. Upon impact, shock front shapes change from ramped to steep ones, with increasing porosity, specific surface area or impact velocity, owing to the transition from the heterogeneous to homogeneous plasticity along transverse directions. This transition of plasticity arises by (i) the strong impedance on large deformation bands as porosity increases; and (ii) the transition from deformation twinning to dislocation slips, and to amorphization, as the specific surface area or impact velocity increases. Shock-induced plasticity, including their nucleation, growth and interactions, also facilitates the collapse of voids. |
doi_str_mv | 10.1039/c8cp05126g |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2127951868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132696424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-7b008001ade19eba01470120c42f8551eae5781e8bbaa3b5c94da56c43d665f83</originalsourceid><addsrcrecordid>eNpdkE9LwzAYh4Mobk4vfgAJeBFZNWn-ND1K0SkMHDjP5W2azs4uqU072be3c3MHT-97ePjx8CB0SckdJSy-10rXRNBQLo7QkHLJgpgofnz4IzlAZ94vCSFUUHaKBowwxYgQQzR7-3D6E3_D2uC6cTUsoC2dHeO6At-Wumw3Yww2x2tX5li7qoLaG1xa7GpjA22qCluwrnaN6zyewzk6KaDy5mJ_R-j96XGePAfT18lL8jANNFO0DaKMENX7QG5obDIglEeEhkTzsFBCUANGRIoalWUALBM65jkIqTnLpRSFYiN0s9vtrb8649t0VfqtDljTm6QhDaNYUCW36PU_dOm6xvZ2PcVCGUse8p663VG6cd43pkjrplxBs0kpSbed00Qls9_Okx6-2k922crkB_QvLPsBn4B25g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132696424</pqid></control><display><type>article</type><title>Shock wave propagation, plasticity, and void collapse in open-cell nanoporous Ta</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Tang, J F ; Xiao, J C ; Deng, L ; Li, W ; Zhang, X M ; Wang, L ; Xiao, S F ; Deng, H Q ; Hu, W Y</creator><creatorcontrib>Tang, J F ; Xiao, J C ; Deng, L ; Li, W ; Zhang, X M ; Wang, L ; Xiao, S F ; Deng, H Q ; Hu, W Y</creatorcontrib><description>We systematically investigate the wave propagation, plasticity and void collapse, as well as the effects of porosity, specific surface area and impact velocity, in a set of open-cell nanoporous Ta, during shock compression, via performing large-scale non-equilibrium molecular dynamics simulations. The shock wave propagation presents an impedance, sensitive to porosity, but not to specific surface area. Such surprising phenomena are due to the similar sensitivities in density and stress variations to porosity or specific surface area. Upon impact, shock front shapes change from ramped to steep ones, with increasing porosity, specific surface area or impact velocity, owing to the transition from the heterogeneous to homogeneous plasticity along transverse directions. This transition of plasticity arises by (i) the strong impedance on large deformation bands as porosity increases; and (ii) the transition from deformation twinning to dislocation slips, and to amorphization, as the specific surface area or impact velocity increases. Shock-induced plasticity, including their nucleation, growth and interactions, also facilitates the collapse of voids.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c8cp05126g</identifier><identifier>PMID: 30383055</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Amorphization ; Collapse ; Deformation ; Dislocations ; Impact velocity ; Impedance ; Longitudinal waves ; Molecular dynamics ; Nucleation ; Plastic properties ; Porosity ; Propagation ; Shock wave propagation ; Shock waves ; Specific surface ; Surface area ; Twinning</subject><ispartof>Physical chemistry chemical physics : PCCP, 2018-11, Vol.20 (44), p.28039-28048</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-7b008001ade19eba01470120c42f8551eae5781e8bbaa3b5c94da56c43d665f83</citedby><cites>FETCH-LOGICAL-c381t-7b008001ade19eba01470120c42f8551eae5781e8bbaa3b5c94da56c43d665f83</cites><orcidid>0000-0002-9999-5081 ; 0000-0002-0133-9474 ; 0000-0003-4866-3527 ; 0000-0003-4484-9260</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30383055$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, J F</creatorcontrib><creatorcontrib>Xiao, J C</creatorcontrib><creatorcontrib>Deng, L</creatorcontrib><creatorcontrib>Li, W</creatorcontrib><creatorcontrib>Zhang, X M</creatorcontrib><creatorcontrib>Wang, L</creatorcontrib><creatorcontrib>Xiao, S F</creatorcontrib><creatorcontrib>Deng, H Q</creatorcontrib><creatorcontrib>Hu, W Y</creatorcontrib><title>Shock wave propagation, plasticity, and void collapse in open-cell nanoporous Ta</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>We systematically investigate the wave propagation, plasticity and void collapse, as well as the effects of porosity, specific surface area and impact velocity, in a set of open-cell nanoporous Ta, during shock compression, via performing large-scale non-equilibrium molecular dynamics simulations. The shock wave propagation presents an impedance, sensitive to porosity, but not to specific surface area. Such surprising phenomena are due to the similar sensitivities in density and stress variations to porosity or specific surface area. Upon impact, shock front shapes change from ramped to steep ones, with increasing porosity, specific surface area or impact velocity, owing to the transition from the heterogeneous to homogeneous plasticity along transverse directions. This transition of plasticity arises by (i) the strong impedance on large deformation bands as porosity increases; and (ii) the transition from deformation twinning to dislocation slips, and to amorphization, as the specific surface area or impact velocity increases. Shock-induced plasticity, including their nucleation, growth and interactions, also facilitates the collapse of voids.</description><subject>Amorphization</subject><subject>Collapse</subject><subject>Deformation</subject><subject>Dislocations</subject><subject>Impact velocity</subject><subject>Impedance</subject><subject>Longitudinal waves</subject><subject>Molecular dynamics</subject><subject>Nucleation</subject><subject>Plastic properties</subject><subject>Porosity</subject><subject>Propagation</subject><subject>Shock wave propagation</subject><subject>Shock waves</subject><subject>Specific surface</subject><subject>Surface area</subject><subject>Twinning</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkE9LwzAYh4Mobk4vfgAJeBFZNWn-ND1K0SkMHDjP5W2azs4uqU072be3c3MHT-97ePjx8CB0SckdJSy-10rXRNBQLo7QkHLJgpgofnz4IzlAZ94vCSFUUHaKBowwxYgQQzR7-3D6E3_D2uC6cTUsoC2dHeO6At-Wumw3Yww2x2tX5li7qoLaG1xa7GpjA22qCluwrnaN6zyewzk6KaDy5mJ_R-j96XGePAfT18lL8jANNFO0DaKMENX7QG5obDIglEeEhkTzsFBCUANGRIoalWUALBM65jkIqTnLpRSFYiN0s9vtrb8649t0VfqtDljTm6QhDaNYUCW36PU_dOm6xvZ2PcVCGUse8p663VG6cd43pkjrplxBs0kpSbed00Qls9_Okx6-2k922crkB_QvLPsBn4B25g</recordid><startdate>20181114</startdate><enddate>20181114</enddate><creator>Tang, J F</creator><creator>Xiao, J C</creator><creator>Deng, L</creator><creator>Li, W</creator><creator>Zhang, X M</creator><creator>Wang, L</creator><creator>Xiao, S F</creator><creator>Deng, H Q</creator><creator>Hu, W Y</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9999-5081</orcidid><orcidid>https://orcid.org/0000-0002-0133-9474</orcidid><orcidid>https://orcid.org/0000-0003-4866-3527</orcidid><orcidid>https://orcid.org/0000-0003-4484-9260</orcidid></search><sort><creationdate>20181114</creationdate><title>Shock wave propagation, plasticity, and void collapse in open-cell nanoporous Ta</title><author>Tang, J F ; Xiao, J C ; Deng, L ; Li, W ; Zhang, X M ; Wang, L ; Xiao, S F ; Deng, H Q ; Hu, W Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-7b008001ade19eba01470120c42f8551eae5781e8bbaa3b5c94da56c43d665f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amorphization</topic><topic>Collapse</topic><topic>Deformation</topic><topic>Dislocations</topic><topic>Impact velocity</topic><topic>Impedance</topic><topic>Longitudinal waves</topic><topic>Molecular dynamics</topic><topic>Nucleation</topic><topic>Plastic properties</topic><topic>Porosity</topic><topic>Propagation</topic><topic>Shock wave propagation</topic><topic>Shock waves</topic><topic>Specific surface</topic><topic>Surface area</topic><topic>Twinning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, J F</creatorcontrib><creatorcontrib>Xiao, J C</creatorcontrib><creatorcontrib>Deng, L</creatorcontrib><creatorcontrib>Li, W</creatorcontrib><creatorcontrib>Zhang, X M</creatorcontrib><creatorcontrib>Wang, L</creatorcontrib><creatorcontrib>Xiao, S F</creatorcontrib><creatorcontrib>Deng, H Q</creatorcontrib><creatorcontrib>Hu, W Y</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, J F</au><au>Xiao, J C</au><au>Deng, L</au><au>Li, W</au><au>Zhang, X M</au><au>Wang, L</au><au>Xiao, S F</au><au>Deng, H Q</au><au>Hu, W Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shock wave propagation, plasticity, and void collapse in open-cell nanoporous Ta</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2018-11-14</date><risdate>2018</risdate><volume>20</volume><issue>44</issue><spage>28039</spage><epage>28048</epage><pages>28039-28048</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>We systematically investigate the wave propagation, plasticity and void collapse, as well as the effects of porosity, specific surface area and impact velocity, in a set of open-cell nanoporous Ta, during shock compression, via performing large-scale non-equilibrium molecular dynamics simulations. The shock wave propagation presents an impedance, sensitive to porosity, but not to specific surface area. Such surprising phenomena are due to the similar sensitivities in density and stress variations to porosity or specific surface area. Upon impact, shock front shapes change from ramped to steep ones, with increasing porosity, specific surface area or impact velocity, owing to the transition from the heterogeneous to homogeneous plasticity along transverse directions. This transition of plasticity arises by (i) the strong impedance on large deformation bands as porosity increases; and (ii) the transition from deformation twinning to dislocation slips, and to amorphization, as the specific surface area or impact velocity increases. Shock-induced plasticity, including their nucleation, growth and interactions, also facilitates the collapse of voids.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30383055</pmid><doi>10.1039/c8cp05126g</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9999-5081</orcidid><orcidid>https://orcid.org/0000-0002-0133-9474</orcidid><orcidid>https://orcid.org/0000-0003-4866-3527</orcidid><orcidid>https://orcid.org/0000-0003-4484-9260</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2018-11, Vol.20 (44), p.28039-28048 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_2127951868 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Amorphization Collapse Deformation Dislocations Impact velocity Impedance Longitudinal waves Molecular dynamics Nucleation Plastic properties Porosity Propagation Shock wave propagation Shock waves Specific surface Surface area Twinning |
title | Shock wave propagation, plasticity, and void collapse in open-cell nanoporous Ta |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A24%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shock%20wave%20propagation,%20plasticity,%20and%20void%20collapse%20in%20open-cell%20nanoporous%20Ta&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Tang,%20J%20F&rft.date=2018-11-14&rft.volume=20&rft.issue=44&rft.spage=28039&rft.epage=28048&rft.pages=28039-28048&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c8cp05126g&rft_dat=%3Cproquest_cross%3E2132696424%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132696424&rft_id=info:pmid/30383055&rfr_iscdi=true |