Artificial intelligence and amniotic fluid multiomics: prediction of perinatal outcome in asymptomatic women with short cervix

ABSTRACT Objective To evaluate the application of artificial intelligence (AI), i.e. deep learning and other machine‐learning techniques, to amniotic fluid (AF) metabolomics and proteomics, alone and in combination with sonographic, clinical and demographic factors, in the prediction of perinatal ou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ultrasound in obstetrics & gynecology 2019-07, Vol.54 (1), p.110-118
Hauptverfasser: Bahado‐Singh, R. O., Sonek, J., McKenna, D., Cool, D., Aydas, B., Turkoglu, O., Bjorndahl, T., Mandal, R., Wishart, D., Friedman, P., Graham, S. F., Yilmaz, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT Objective To evaluate the application of artificial intelligence (AI), i.e. deep learning and other machine‐learning techniques, to amniotic fluid (AF) metabolomics and proteomics, alone and in combination with sonographic, clinical and demographic factors, in the prediction of perinatal outcome in asymptomatic pregnant women with short cervical length (CL). Methods AF samples, which had been obtained in the second trimester from asymptomatic women with short CL (
ISSN:0960-7692
1469-0705
DOI:10.1002/uog.20168