Synthetic Control of Two-Dimensional NiTe2 Single Crystals with Highly Uniform Thickness Distributions

Two-dimensional (2D) layered materials have stimulated extensive research interest for their unique thickness-dependent electronic and optical properties. However, the layer-number-dependent studies on 2D materials to date are largely limited to exfoliated flakes with relatively small lateral size a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2018-10, Vol.140 (43), p.14217-14223
Hauptverfasser: Zhao, Bei, Dang, Weiqi, Liu, Yuan, Li, Bo, Li, Jia, Luo, Jun, Zhang, Zhengwei, Wu, Ruixia, Ma, Huifang, Sun, Guangzhuang, Huang, Yu, Duan, Xidong, Duan, Xiangfeng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14223
container_issue 43
container_start_page 14217
container_title Journal of the American Chemical Society
container_volume 140
creator Zhao, Bei
Dang, Weiqi
Liu, Yuan
Li, Bo
Li, Jia
Luo, Jun
Zhang, Zhengwei
Wu, Ruixia
Ma, Huifang
Sun, Guangzhuang
Huang, Yu
Duan, Xidong
Duan, Xiangfeng
description Two-dimensional (2D) layered materials have stimulated extensive research interest for their unique thickness-dependent electronic and optical properties. However, the layer-number-dependent studies on 2D materials to date are largely limited to exfoliated flakes with relatively small lateral size and poor yield. The direct synthesis of 2D materials with a precise control of the number of atomic layers remains a substantial synthetic challenge. Here we report a systematic study of chemical vapor deposition synthesis of large-area atomically thin 2D nickel telluride (NiTe2) single crystals and investigate the thickness dependent electronic properties. By controlling the growth temperature, we show that the highly uniform NiTe2 single crystals can be synthesized with precisely tunable thickness varying from 1, 2, 3, . . . to multilayers with a standard deviation (∼0.3 nm) of less than the thickness of a monolayer layer NiTe2. Our studies further reveal a systematic evolution of single crystal domain size and nucleation density with the largest lateral domain size up to ∼440 μm. X-ray diffraction, transmission electron microscopy, and high resolution scanning transmission electron microscope studies demonstrate that the resulting 2D crystals are high quality single crystals and adopt hexagonal 1T phase. Electrical transport studies reveal that the 2D NiTe2 single crystals show a strong thickness-tunable electrical properties, with an excellent conductivity up to 7.8 × 105 S m–1 and extraordinary breakdown current density up to 4.7 × 107 A/cm2. The systematic study and robust synthesis of NiTe2 nanosheets defines a reliable chemical route to 2D single crystals with precisely tailored thickness and could enable the design of new device architectures based on thickness-tunable electrical properties.
doi_str_mv 10.1021/jacs.8b08124
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2127658145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127658145</sourcerecordid><originalsourceid>FETCH-LOGICAL-a151t-825880c3d47b3dff8bef2ae3a9afe1fdd137057805e4f565bd1d5045466fe95a3</originalsourceid><addsrcrecordid>eNpFkEFLwzAcxYMoOKc3P0COXjrzT5M2O0qnmzD0sO4c0jZZM7tEm5Sxb2-HA0-PB-89eD-EHoHMgFB43qs6zERFBFB2hSbAKUk40OwaTQghNMlFlt6iuxD2o2VUwASZzcnFVkdb48K72PsOe4PLo08W9qBdsN6pDn_YUlO8sW7XaVz0pxBVF_DRxhav7K7tTnjrrPH9AZetrb-cDgEvbIi9rYY4ToR7dGPGin646BRt317LYpWsP5fvxcs6UcAhJoJyIUidNiyv0sYYUWlDlU7VXBkNpmkgzQnPBeGaGZ7xqoGGE8ZZlhk95yqdoqe_3e_e_ww6RHmwodZdp5z2Q5AUaJ5xAYz_R0docu-HfjwaJBB5RinPKOUFZfoLibJopA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127658145</pqid></control><display><type>article</type><title>Synthetic Control of Two-Dimensional NiTe2 Single Crystals with Highly Uniform Thickness Distributions</title><source>ACS Publications</source><creator>Zhao, Bei ; Dang, Weiqi ; Liu, Yuan ; Li, Bo ; Li, Jia ; Luo, Jun ; Zhang, Zhengwei ; Wu, Ruixia ; Ma, Huifang ; Sun, Guangzhuang ; Huang, Yu ; Duan, Xidong ; Duan, Xiangfeng</creator><creatorcontrib>Zhao, Bei ; Dang, Weiqi ; Liu, Yuan ; Li, Bo ; Li, Jia ; Luo, Jun ; Zhang, Zhengwei ; Wu, Ruixia ; Ma, Huifang ; Sun, Guangzhuang ; Huang, Yu ; Duan, Xidong ; Duan, Xiangfeng</creatorcontrib><description>Two-dimensional (2D) layered materials have stimulated extensive research interest for their unique thickness-dependent electronic and optical properties. However, the layer-number-dependent studies on 2D materials to date are largely limited to exfoliated flakes with relatively small lateral size and poor yield. The direct synthesis of 2D materials with a precise control of the number of atomic layers remains a substantial synthetic challenge. Here we report a systematic study of chemical vapor deposition synthesis of large-area atomically thin 2D nickel telluride (NiTe2) single crystals and investigate the thickness dependent electronic properties. By controlling the growth temperature, we show that the highly uniform NiTe2 single crystals can be synthesized with precisely tunable thickness varying from 1, 2, 3, . . . to multilayers with a standard deviation (∼0.3 nm) of less than the thickness of a monolayer layer NiTe2. Our studies further reveal a systematic evolution of single crystal domain size and nucleation density with the largest lateral domain size up to ∼440 μm. X-ray diffraction, transmission electron microscopy, and high resolution scanning transmission electron microscope studies demonstrate that the resulting 2D crystals are high quality single crystals and adopt hexagonal 1T phase. Electrical transport studies reveal that the 2D NiTe2 single crystals show a strong thickness-tunable electrical properties, with an excellent conductivity up to 7.8 × 105 S m–1 and extraordinary breakdown current density up to 4.7 × 107 A/cm2. The systematic study and robust synthesis of NiTe2 nanosheets defines a reliable chemical route to 2D single crystals with precisely tailored thickness and could enable the design of new device architectures based on thickness-tunable electrical properties.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.8b08124</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2018-10, Vol.140 (43), p.14217-14223</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5084-2087 ; 0000-0002-5802-7519 ; 0000-0003-1793-0741 ; 0000-0002-4321-6288</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.8b08124$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.8b08124$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Zhao, Bei</creatorcontrib><creatorcontrib>Dang, Weiqi</creatorcontrib><creatorcontrib>Liu, Yuan</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Li, Jia</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Zhang, Zhengwei</creatorcontrib><creatorcontrib>Wu, Ruixia</creatorcontrib><creatorcontrib>Ma, Huifang</creatorcontrib><creatorcontrib>Sun, Guangzhuang</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Duan, Xidong</creatorcontrib><creatorcontrib>Duan, Xiangfeng</creatorcontrib><title>Synthetic Control of Two-Dimensional NiTe2 Single Crystals with Highly Uniform Thickness Distributions</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Two-dimensional (2D) layered materials have stimulated extensive research interest for their unique thickness-dependent electronic and optical properties. However, the layer-number-dependent studies on 2D materials to date are largely limited to exfoliated flakes with relatively small lateral size and poor yield. The direct synthesis of 2D materials with a precise control of the number of atomic layers remains a substantial synthetic challenge. Here we report a systematic study of chemical vapor deposition synthesis of large-area atomically thin 2D nickel telluride (NiTe2) single crystals and investigate the thickness dependent electronic properties. By controlling the growth temperature, we show that the highly uniform NiTe2 single crystals can be synthesized with precisely tunable thickness varying from 1, 2, 3, . . . to multilayers with a standard deviation (∼0.3 nm) of less than the thickness of a monolayer layer NiTe2. Our studies further reveal a systematic evolution of single crystal domain size and nucleation density with the largest lateral domain size up to ∼440 μm. X-ray diffraction, transmission electron microscopy, and high resolution scanning transmission electron microscope studies demonstrate that the resulting 2D crystals are high quality single crystals and adopt hexagonal 1T phase. Electrical transport studies reveal that the 2D NiTe2 single crystals show a strong thickness-tunable electrical properties, with an excellent conductivity up to 7.8 × 105 S m–1 and extraordinary breakdown current density up to 4.7 × 107 A/cm2. The systematic study and robust synthesis of NiTe2 nanosheets defines a reliable chemical route to 2D single crystals with precisely tailored thickness and could enable the design of new device architectures based on thickness-tunable electrical properties.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLwzAcxYMoOKc3P0COXjrzT5M2O0qnmzD0sO4c0jZZM7tEm5Sxb2-HA0-PB-89eD-EHoHMgFB43qs6zERFBFB2hSbAKUk40OwaTQghNMlFlt6iuxD2o2VUwASZzcnFVkdb48K72PsOe4PLo08W9qBdsN6pDn_YUlO8sW7XaVz0pxBVF_DRxhav7K7tTnjrrPH9AZetrb-cDgEvbIi9rYY4ToR7dGPGin646BRt317LYpWsP5fvxcs6UcAhJoJyIUidNiyv0sYYUWlDlU7VXBkNpmkgzQnPBeGaGZ7xqoGGE8ZZlhk95yqdoqe_3e_e_ww6RHmwodZdp5z2Q5AUaJ5xAYz_R0docu-HfjwaJBB5RinPKOUFZfoLibJopA</recordid><startdate>20181031</startdate><enddate>20181031</enddate><creator>Zhao, Bei</creator><creator>Dang, Weiqi</creator><creator>Liu, Yuan</creator><creator>Li, Bo</creator><creator>Li, Jia</creator><creator>Luo, Jun</creator><creator>Zhang, Zhengwei</creator><creator>Wu, Ruixia</creator><creator>Ma, Huifang</creator><creator>Sun, Guangzhuang</creator><creator>Huang, Yu</creator><creator>Duan, Xidong</creator><creator>Duan, Xiangfeng</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5084-2087</orcidid><orcidid>https://orcid.org/0000-0002-5802-7519</orcidid><orcidid>https://orcid.org/0000-0003-1793-0741</orcidid><orcidid>https://orcid.org/0000-0002-4321-6288</orcidid></search><sort><creationdate>20181031</creationdate><title>Synthetic Control of Two-Dimensional NiTe2 Single Crystals with Highly Uniform Thickness Distributions</title><author>Zhao, Bei ; Dang, Weiqi ; Liu, Yuan ; Li, Bo ; Li, Jia ; Luo, Jun ; Zhang, Zhengwei ; Wu, Ruixia ; Ma, Huifang ; Sun, Guangzhuang ; Huang, Yu ; Duan, Xidong ; Duan, Xiangfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a151t-825880c3d47b3dff8bef2ae3a9afe1fdd137057805e4f565bd1d5045466fe95a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Bei</creatorcontrib><creatorcontrib>Dang, Weiqi</creatorcontrib><creatorcontrib>Liu, Yuan</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Li, Jia</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Zhang, Zhengwei</creatorcontrib><creatorcontrib>Wu, Ruixia</creatorcontrib><creatorcontrib>Ma, Huifang</creatorcontrib><creatorcontrib>Sun, Guangzhuang</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Duan, Xidong</creatorcontrib><creatorcontrib>Duan, Xiangfeng</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Bei</au><au>Dang, Weiqi</au><au>Liu, Yuan</au><au>Li, Bo</au><au>Li, Jia</au><au>Luo, Jun</au><au>Zhang, Zhengwei</au><au>Wu, Ruixia</au><au>Ma, Huifang</au><au>Sun, Guangzhuang</au><au>Huang, Yu</au><au>Duan, Xidong</au><au>Duan, Xiangfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic Control of Two-Dimensional NiTe2 Single Crystals with Highly Uniform Thickness Distributions</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2018-10-31</date><risdate>2018</risdate><volume>140</volume><issue>43</issue><spage>14217</spage><epage>14223</epage><pages>14217-14223</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Two-dimensional (2D) layered materials have stimulated extensive research interest for their unique thickness-dependent electronic and optical properties. However, the layer-number-dependent studies on 2D materials to date are largely limited to exfoliated flakes with relatively small lateral size and poor yield. The direct synthesis of 2D materials with a precise control of the number of atomic layers remains a substantial synthetic challenge. Here we report a systematic study of chemical vapor deposition synthesis of large-area atomically thin 2D nickel telluride (NiTe2) single crystals and investigate the thickness dependent electronic properties. By controlling the growth temperature, we show that the highly uniform NiTe2 single crystals can be synthesized with precisely tunable thickness varying from 1, 2, 3, . . . to multilayers with a standard deviation (∼0.3 nm) of less than the thickness of a monolayer layer NiTe2. Our studies further reveal a systematic evolution of single crystal domain size and nucleation density with the largest lateral domain size up to ∼440 μm. X-ray diffraction, transmission electron microscopy, and high resolution scanning transmission electron microscope studies demonstrate that the resulting 2D crystals are high quality single crystals and adopt hexagonal 1T phase. Electrical transport studies reveal that the 2D NiTe2 single crystals show a strong thickness-tunable electrical properties, with an excellent conductivity up to 7.8 × 105 S m–1 and extraordinary breakdown current density up to 4.7 × 107 A/cm2. The systematic study and robust synthesis of NiTe2 nanosheets defines a reliable chemical route to 2D single crystals with precisely tailored thickness and could enable the design of new device architectures based on thickness-tunable electrical properties.</abstract><pub>American Chemical Society</pub><doi>10.1021/jacs.8b08124</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5084-2087</orcidid><orcidid>https://orcid.org/0000-0002-5802-7519</orcidid><orcidid>https://orcid.org/0000-0003-1793-0741</orcidid><orcidid>https://orcid.org/0000-0002-4321-6288</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2018-10, Vol.140 (43), p.14217-14223
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_2127658145
source ACS Publications
title Synthetic Control of Two-Dimensional NiTe2 Single Crystals with Highly Uniform Thickness Distributions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A02%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic%20Control%20of%20Two-Dimensional%20NiTe2%20Single%20Crystals%20with%20Highly%20Uniform%20Thickness%20Distributions&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Zhao,%20Bei&rft.date=2018-10-31&rft.volume=140&rft.issue=43&rft.spage=14217&rft.epage=14223&rft.pages=14217-14223&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.8b08124&rft_dat=%3Cproquest_acs_j%3E2127658145%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127658145&rft_id=info:pmid/&rfr_iscdi=true