Electronic processes in NO dimerization on Ag and Cu clusters: DFT and MRMP2 studies
Experimentally observed NO dimerization on Cu and Ag surfaces is surprising because binding energy of NO dimer is very small in gas phase. MRMP2, MP2 to MP4, CCSD(T), and DFT studies of NO dimerization on Ag2 and Cu2 clusters disclosed that the CCSD(T) method could be applied to this reaction on Ag2...
Gespeichert in:
Veröffentlicht in: | Journal of computational chemistry 2019-01, Vol.40 (1), p.181-190 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 190 |
---|---|
container_issue | 1 |
container_start_page | 181 |
container_title | Journal of computational chemistry |
container_volume | 40 |
creator | Takagi, Nozomi Nakagaki, Masayuki Ishimura, Kazuya Fukuda, Ryoichi Ehara, Masahiro Sakaki, Shigeyoshi |
description | Experimentally observed NO dimerization on Cu and Ag surfaces is surprising because binding energy of NO dimer is very small in gas phase. MRMP2, MP2 to MP4, CCSD(T), and DFT studies of NO dimerization on Ag2 and Cu2 clusters disclosed that the CCSD(T) method could be applied to this reaction on Ag2 and Cu2 unlike NO dimerization in gas phase which exhibits significantly large nondynamical electron correlation effect. Charge‐transfer (CT) from Ag2 and Cu2 to NO moieties plays important role in NN bond formation between two NO molecules. This CT considerably decreases nondynamical correlation effect. Also, the DFT method could be applied to this NO dimerization, if appropriate DFT functional is used; all pure functionals examined here and most of the hybrid functionals underestimated the activation barrier (Ea), while only ωB97X provided Ea similar to CCSD(T)‐calculated value. NO dimerization on similar Cu2 and Cu5 needs moderately larger Ea than those on Ag2 and Ag5, because frontier orbital participating in the CT exists at lower energy in Cu2 and Cu5 than in Ag2 and Ag5. The Ea decreases in the order Ag2 >> Ag38 > Ag7 ∼ Ag5 and the reaction energy (ΔE) is positive (endothermic) in Ag2 but significantly negative in Ag38, Ag7, and Ag5, indicating that various Ag clusters could be effective for NO dimerization except for Ag2. The decreasing order of Ea and increasing order of exothermicity are attributed to increasing order of the frontier orbital energy of Ag2 < Ag38 < Ag7 ∼ Ag5. © 2018 Wiley Periodicals, Inc.
NO dimerization on Ag and Cu clusters differs very much from that in gas phase. The nondynamical electron correlation effect is very small and the reaction easily occurs with nearly no barrier and significantly large exothermicity on these clusters. |
doi_str_mv | 10.1002/jcc.25568 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2127656807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2150185414</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3888-972ca1fa2397b387222bb5357a3539885c37d9c5c43f20193f07aa3d3b1cecef3</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMobk4v_AMS8EYvuuWjaVLvRt38YHMiE7wraZpKRtfOpEXmrzeu6oUgHDhweHh5zwPAKUZDjBAZrZQaEsYisQf6GMVREAv-sg_6CMckEBHDPXDk3AohRFkUHoIeRZQLHMZ9sJyUWjW2royCG1sr7Zx20FTwYQFzs9bWfMjG1BX0M36Fssph0kJVtq7R1l3B6-lyd5w_zR8JdE2bG-2OwUEhS6dPvvcAPE8ny-Q2mC1u7pLxLFBUCBHEnCiJC0lozDMqOCEkyxhlXFJGYyGYojyPFVMhLYj_hRaIS0lzmmGllS7oAFx0ub75W6tdk66NU7osZaXr1qUEEx55LYh79PwPuqpbW_l2nmIICxbi0FOXHaVs7ZzVRbqxZi3tNsUo_VKdetXpTrVnz74T22yt81_yx60HRh3wbkq9_T8pvU-SLvITmMOFGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2150185414</pqid></control><display><type>article</type><title>Electronic processes in NO dimerization on Ag and Cu clusters: DFT and MRMP2 studies</title><source>Wiley Online Library Journals</source><creator>Takagi, Nozomi ; Nakagaki, Masayuki ; Ishimura, Kazuya ; Fukuda, Ryoichi ; Ehara, Masahiro ; Sakaki, Shigeyoshi</creator><creatorcontrib>Takagi, Nozomi ; Nakagaki, Masayuki ; Ishimura, Kazuya ; Fukuda, Ryoichi ; Ehara, Masahiro ; Sakaki, Shigeyoshi</creatorcontrib><description>Experimentally observed NO dimerization on Cu and Ag surfaces is surprising because binding energy of NO dimer is very small in gas phase. MRMP2, MP2 to MP4, CCSD(T), and DFT studies of NO dimerization on Ag2 and Cu2 clusters disclosed that the CCSD(T) method could be applied to this reaction on Ag2 and Cu2 unlike NO dimerization in gas phase which exhibits significantly large nondynamical electron correlation effect. Charge‐transfer (CT) from Ag2 and Cu2 to NO moieties plays important role in NN bond formation between two NO molecules. This CT considerably decreases nondynamical correlation effect. Also, the DFT method could be applied to this NO dimerization, if appropriate DFT functional is used; all pure functionals examined here and most of the hybrid functionals underestimated the activation barrier (Ea), while only ωB97X provided Ea similar to CCSD(T)‐calculated value. NO dimerization on similar Cu2 and Cu5 needs moderately larger Ea than those on Ag2 and Ag5, because frontier orbital participating in the CT exists at lower energy in Cu2 and Cu5 than in Ag2 and Ag5. The Ea decreases in the order Ag2 >> Ag38 > Ag7 ∼ Ag5 and the reaction energy (ΔE) is positive (endothermic) in Ag2 but significantly negative in Ag38, Ag7, and Ag5, indicating that various Ag clusters could be effective for NO dimerization except for Ag2. The decreasing order of Ea and increasing order of exothermicity are attributed to increasing order of the frontier orbital energy of Ag2 < Ag38 < Ag7 ∼ Ag5. © 2018 Wiley Periodicals, Inc.
NO dimerization on Ag and Cu clusters differs very much from that in gas phase. The nondynamical electron correlation effect is very small and the reaction easily occurs with nearly no barrier and significantly large exothermicity on these clusters.</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.25568</identifier><identifier>PMID: 30378149</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Ag cluster ; Charge transfer ; Clusters ; Copper ; Cu cluster ; Density functional theory ; DFT ; Dimerization ; Dimers ; Endothermic reactions ; Exothermic reactions ; MRMP2 ; NO dimerization ; Silver ; Vapor phases</subject><ispartof>Journal of computational chemistry, 2019-01, Vol.40 (1), p.181-190</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3888-972ca1fa2397b387222bb5357a3539885c37d9c5c43f20193f07aa3d3b1cecef3</citedby><cites>FETCH-LOGICAL-c3888-972ca1fa2397b387222bb5357a3539885c37d9c5c43f20193f07aa3d3b1cecef3</cites><orcidid>0000-0002-2185-0077 ; 0000-0002-1783-3282</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcc.25568$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcc.25568$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30378149$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Takagi, Nozomi</creatorcontrib><creatorcontrib>Nakagaki, Masayuki</creatorcontrib><creatorcontrib>Ishimura, Kazuya</creatorcontrib><creatorcontrib>Fukuda, Ryoichi</creatorcontrib><creatorcontrib>Ehara, Masahiro</creatorcontrib><creatorcontrib>Sakaki, Shigeyoshi</creatorcontrib><title>Electronic processes in NO dimerization on Ag and Cu clusters: DFT and MRMP2 studies</title><title>Journal of computational chemistry</title><addtitle>J Comput Chem</addtitle><description>Experimentally observed NO dimerization on Cu and Ag surfaces is surprising because binding energy of NO dimer is very small in gas phase. MRMP2, MP2 to MP4, CCSD(T), and DFT studies of NO dimerization on Ag2 and Cu2 clusters disclosed that the CCSD(T) method could be applied to this reaction on Ag2 and Cu2 unlike NO dimerization in gas phase which exhibits significantly large nondynamical electron correlation effect. Charge‐transfer (CT) from Ag2 and Cu2 to NO moieties plays important role in NN bond formation between two NO molecules. This CT considerably decreases nondynamical correlation effect. Also, the DFT method could be applied to this NO dimerization, if appropriate DFT functional is used; all pure functionals examined here and most of the hybrid functionals underestimated the activation barrier (Ea), while only ωB97X provided Ea similar to CCSD(T)‐calculated value. NO dimerization on similar Cu2 and Cu5 needs moderately larger Ea than those on Ag2 and Ag5, because frontier orbital participating in the CT exists at lower energy in Cu2 and Cu5 than in Ag2 and Ag5. The Ea decreases in the order Ag2 >> Ag38 > Ag7 ∼ Ag5 and the reaction energy (ΔE) is positive (endothermic) in Ag2 but significantly negative in Ag38, Ag7, and Ag5, indicating that various Ag clusters could be effective for NO dimerization except for Ag2. The decreasing order of Ea and increasing order of exothermicity are attributed to increasing order of the frontier orbital energy of Ag2 < Ag38 < Ag7 ∼ Ag5. © 2018 Wiley Periodicals, Inc.
NO dimerization on Ag and Cu clusters differs very much from that in gas phase. The nondynamical electron correlation effect is very small and the reaction easily occurs with nearly no barrier and significantly large exothermicity on these clusters.</description><subject>Ag cluster</subject><subject>Charge transfer</subject><subject>Clusters</subject><subject>Copper</subject><subject>Cu cluster</subject><subject>Density functional theory</subject><subject>DFT</subject><subject>Dimerization</subject><subject>Dimers</subject><subject>Endothermic reactions</subject><subject>Exothermic reactions</subject><subject>MRMP2</subject><subject>NO dimerization</subject><subject>Silver</subject><subject>Vapor phases</subject><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAUhoMobk4v_AMS8EYvuuWjaVLvRt38YHMiE7wraZpKRtfOpEXmrzeu6oUgHDhweHh5zwPAKUZDjBAZrZQaEsYisQf6GMVREAv-sg_6CMckEBHDPXDk3AohRFkUHoIeRZQLHMZ9sJyUWjW2royCG1sr7Zx20FTwYQFzs9bWfMjG1BX0M36Fssph0kJVtq7R1l3B6-lyd5w_zR8JdE2bG-2OwUEhS6dPvvcAPE8ny-Q2mC1u7pLxLFBUCBHEnCiJC0lozDMqOCEkyxhlXFJGYyGYojyPFVMhLYj_hRaIS0lzmmGllS7oAFx0ub75W6tdk66NU7osZaXr1qUEEx55LYh79PwPuqpbW_l2nmIICxbi0FOXHaVs7ZzVRbqxZi3tNsUo_VKdetXpTrVnz74T22yt81_yx60HRh3wbkq9_T8pvU-SLvITmMOFGA</recordid><startdate>20190105</startdate><enddate>20190105</enddate><creator>Takagi, Nozomi</creator><creator>Nakagaki, Masayuki</creator><creator>Ishimura, Kazuya</creator><creator>Fukuda, Ryoichi</creator><creator>Ehara, Masahiro</creator><creator>Sakaki, Shigeyoshi</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2185-0077</orcidid><orcidid>https://orcid.org/0000-0002-1783-3282</orcidid></search><sort><creationdate>20190105</creationdate><title>Electronic processes in NO dimerization on Ag and Cu clusters: DFT and MRMP2 studies</title><author>Takagi, Nozomi ; Nakagaki, Masayuki ; Ishimura, Kazuya ; Fukuda, Ryoichi ; Ehara, Masahiro ; Sakaki, Shigeyoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3888-972ca1fa2397b387222bb5357a3539885c37d9c5c43f20193f07aa3d3b1cecef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ag cluster</topic><topic>Charge transfer</topic><topic>Clusters</topic><topic>Copper</topic><topic>Cu cluster</topic><topic>Density functional theory</topic><topic>DFT</topic><topic>Dimerization</topic><topic>Dimers</topic><topic>Endothermic reactions</topic><topic>Exothermic reactions</topic><topic>MRMP2</topic><topic>NO dimerization</topic><topic>Silver</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takagi, Nozomi</creatorcontrib><creatorcontrib>Nakagaki, Masayuki</creatorcontrib><creatorcontrib>Ishimura, Kazuya</creatorcontrib><creatorcontrib>Fukuda, Ryoichi</creatorcontrib><creatorcontrib>Ehara, Masahiro</creatorcontrib><creatorcontrib>Sakaki, Shigeyoshi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takagi, Nozomi</au><au>Nakagaki, Masayuki</au><au>Ishimura, Kazuya</au><au>Fukuda, Ryoichi</au><au>Ehara, Masahiro</au><au>Sakaki, Shigeyoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic processes in NO dimerization on Ag and Cu clusters: DFT and MRMP2 studies</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J Comput Chem</addtitle><date>2019-01-05</date><risdate>2019</risdate><volume>40</volume><issue>1</issue><spage>181</spage><epage>190</epage><pages>181-190</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><abstract>Experimentally observed NO dimerization on Cu and Ag surfaces is surprising because binding energy of NO dimer is very small in gas phase. MRMP2, MP2 to MP4, CCSD(T), and DFT studies of NO dimerization on Ag2 and Cu2 clusters disclosed that the CCSD(T) method could be applied to this reaction on Ag2 and Cu2 unlike NO dimerization in gas phase which exhibits significantly large nondynamical electron correlation effect. Charge‐transfer (CT) from Ag2 and Cu2 to NO moieties plays important role in NN bond formation between two NO molecules. This CT considerably decreases nondynamical correlation effect. Also, the DFT method could be applied to this NO dimerization, if appropriate DFT functional is used; all pure functionals examined here and most of the hybrid functionals underestimated the activation barrier (Ea), while only ωB97X provided Ea similar to CCSD(T)‐calculated value. NO dimerization on similar Cu2 and Cu5 needs moderately larger Ea than those on Ag2 and Ag5, because frontier orbital participating in the CT exists at lower energy in Cu2 and Cu5 than in Ag2 and Ag5. The Ea decreases in the order Ag2 >> Ag38 > Ag7 ∼ Ag5 and the reaction energy (ΔE) is positive (endothermic) in Ag2 but significantly negative in Ag38, Ag7, and Ag5, indicating that various Ag clusters could be effective for NO dimerization except for Ag2. The decreasing order of Ea and increasing order of exothermicity are attributed to increasing order of the frontier orbital energy of Ag2 < Ag38 < Ag7 ∼ Ag5. © 2018 Wiley Periodicals, Inc.
NO dimerization on Ag and Cu clusters differs very much from that in gas phase. The nondynamical electron correlation effect is very small and the reaction easily occurs with nearly no barrier and significantly large exothermicity on these clusters.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>30378149</pmid><doi>10.1002/jcc.25568</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2185-0077</orcidid><orcidid>https://orcid.org/0000-0002-1783-3282</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0192-8651 |
ispartof | Journal of computational chemistry, 2019-01, Vol.40 (1), p.181-190 |
issn | 0192-8651 1096-987X |
language | eng |
recordid | cdi_proquest_miscellaneous_2127656807 |
source | Wiley Online Library Journals |
subjects | Ag cluster Charge transfer Clusters Copper Cu cluster Density functional theory DFT Dimerization Dimers Endothermic reactions Exothermic reactions MRMP2 NO dimerization Silver Vapor phases |
title | Electronic processes in NO dimerization on Ag and Cu clusters: DFT and MRMP2 studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A53%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20processes%20in%20NO%20dimerization%20on%20Ag%20and%20Cu%20clusters:%20DFT%20and%20MRMP2%20studies&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Takagi,%20Nozomi&rft.date=2019-01-05&rft.volume=40&rft.issue=1&rft.spage=181&rft.epage=190&rft.pages=181-190&rft.issn=0192-8651&rft.eissn=1096-987X&rft_id=info:doi/10.1002/jcc.25568&rft_dat=%3Cproquest_cross%3E2150185414%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2150185414&rft_id=info:pmid/30378149&rfr_iscdi=true |