Subfunctionalization of the Ruby2–Ruby1 gene cluster during the domestication of citrus

The evolution of fruit colour in plants is intriguing. Citrus fruit has repeatedly gained or lost the ability to synthesize anthocyanins. Chinese box orange, a primitive citrus, can accumulate anthocyanins both in its fruits and its leaves. Wild citrus can accumulate anthocyanins in its leaves. In c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature plants 2018-11, Vol.4 (11), p.930-941
Hauptverfasser: Huang, Ding, Wang, Xia, Tang, Zhouzhou, Yuan, Yue, Xu, Yuantao, He, Jiaxian, Jiang, Xiaolin, Peng, Shu-Ang, Li, Li, Butelli, Eugenio, Deng, Xiuxin, Xu, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 941
container_issue 11
container_start_page 930
container_title Nature plants
container_volume 4
creator Huang, Ding
Wang, Xia
Tang, Zhouzhou
Yuan, Yue
Xu, Yuantao
He, Jiaxian
Jiang, Xiaolin
Peng, Shu-Ang
Li, Li
Butelli, Eugenio
Deng, Xiuxin
Xu, Qiang
description The evolution of fruit colour in plants is intriguing. Citrus fruit has repeatedly gained or lost the ability to synthesize anthocyanins. Chinese box orange, a primitive citrus, can accumulate anthocyanins both in its fruits and its leaves. Wild citrus can accumulate anthocyanins in its leaves. In contrast, most cultivated citrus have lost the ability to accumulate anthocyanins. We characterized a novel MYB regulatory gene, Ruby2 , which is adjacent to Ruby1 , a known anthocyanin activator of citrus. Different Ruby2 alleles can have opposite effects on the regulation of anthocyanin biosynthesis. AbRuby2 Full encodes an anthocyanin activator that mainly functions in the pigmented leaves of Chinese box orange. CgRuby2 Short was identified in purple pummelo and encodes an anthocyanin repressor. CgRuby2 Short has lost the ability to activate anthocyanin biosynthesis. However, it retains the ability to interact with the same partner, CgbHLH1, as CgRuby1, thus acting as a passive competitor in the regulatory complex. Further investigation in different citrus species indicated that the Ruby2 – Ruby1 cluster exhibits subfunctionalization among primitive, wild and cultivated citrus. Our study elucidates the regulatory mechanism and evolutionary history of the Ruby2 – Ruby1 cluster in citrus, which are unique and different from that found in Arabidopsis , grape or petunia. Primitive, wild and cultivated citrus have different abilities in synthesizing anthocyanins. The subfunctionalization of the Ruby2–Ruby1 cluster contributes to the variation and evolution of the anthocyanin biosynthesis regulation in citrus.
doi_str_mv 10.1038/s41477-018-0287-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2127201138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2131225806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-4e702a7917fdaf4b7ed8d87a9711132bcac59a94c79b8d5d0dccc45dc09be0f43</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMozjDOA7iRghs31ZM0bdKlDN5gQPCycBXSJB079DImzWJc-Q6-oU9ia8dRBFfnBL7_T_IhdIjhFEPEzxzFlLEQMA-BcBYmO2hMII67E-O7v_YRmjq3BADM4jhKYB-NIogYhZSO0dO9z3Jfq7ZoalkWr7JfgiYP2mcT3PlsTT7e3vuJg4WpTaBK71pjA-1tUS--KN1UxrWF2kZV0VrvDtBeLktnpps5QY-XFw-z63B-e3UzO5-HivKkDalhQCRLMcu1zGnGjOaaM5kyjHFEMiVVnMqUKpZmXMcatFKKxlpBmhnIaTRBJ0PvyjYvvnuJqAqnTFnK2jTeCYIJI9B18Q49_oMuG2-7f_dUhAmJOSQdhQdK2cY5a3KxskUl7VpgEL16MagXnXrRqxd95mjT7LPK6G3iW3QHkAFwq16csT9X_9_6CXEKj9k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2131225806</pqid></control><display><type>article</type><title>Subfunctionalization of the Ruby2–Ruby1 gene cluster during the domestication of citrus</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Huang, Ding ; Wang, Xia ; Tang, Zhouzhou ; Yuan, Yue ; Xu, Yuantao ; He, Jiaxian ; Jiang, Xiaolin ; Peng, Shu-Ang ; Li, Li ; Butelli, Eugenio ; Deng, Xiuxin ; Xu, Qiang</creator><creatorcontrib>Huang, Ding ; Wang, Xia ; Tang, Zhouzhou ; Yuan, Yue ; Xu, Yuantao ; He, Jiaxian ; Jiang, Xiaolin ; Peng, Shu-Ang ; Li, Li ; Butelli, Eugenio ; Deng, Xiuxin ; Xu, Qiang</creatorcontrib><description>The evolution of fruit colour in plants is intriguing. Citrus fruit has repeatedly gained or lost the ability to synthesize anthocyanins. Chinese box orange, a primitive citrus, can accumulate anthocyanins both in its fruits and its leaves. Wild citrus can accumulate anthocyanins in its leaves. In contrast, most cultivated citrus have lost the ability to accumulate anthocyanins. We characterized a novel MYB regulatory gene, Ruby2 , which is adjacent to Ruby1 , a known anthocyanin activator of citrus. Different Ruby2 alleles can have opposite effects on the regulation of anthocyanin biosynthesis. AbRuby2 Full encodes an anthocyanin activator that mainly functions in the pigmented leaves of Chinese box orange. CgRuby2 Short was identified in purple pummelo and encodes an anthocyanin repressor. CgRuby2 Short has lost the ability to activate anthocyanin biosynthesis. However, it retains the ability to interact with the same partner, CgbHLH1, as CgRuby1, thus acting as a passive competitor in the regulatory complex. Further investigation in different citrus species indicated that the Ruby2 – Ruby1 cluster exhibits subfunctionalization among primitive, wild and cultivated citrus. Our study elucidates the regulatory mechanism and evolutionary history of the Ruby2 – Ruby1 cluster in citrus, which are unique and different from that found in Arabidopsis , grape or petunia. Primitive, wild and cultivated citrus have different abilities in synthesizing anthocyanins. The subfunctionalization of the Ruby2–Ruby1 cluster contributes to the variation and evolution of the anthocyanin biosynthesis regulation in citrus.</description><identifier>ISSN: 2055-0278</identifier><identifier>EISSN: 2055-0278</identifier><identifier>DOI: 10.1038/s41477-018-0287-6</identifier><identifier>PMID: 30374094</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 14/19 ; 38/111 ; 38/39 ; 38/77 ; 631/449/2492 ; 631/449/2667 ; 82/29 ; 82/80 ; 82/83 ; Alleles ; Anthocyanins - metabolism ; Biomedical and Life Sciences ; Biosynthesis ; Citrus - genetics ; Citrus fruits ; Cultivation ; Domestication ; Fruit cultivation ; Fruits ; Gene Expression Regulation, Plant ; Genes, Plant - genetics ; Genes, Plant - physiology ; Leaves ; Life Sciences ; Multigene Family - genetics ; Multigene Family - physiology ; Phylogeny ; Plant Leaves - metabolism ; Plant Sciences ; Plants, Genetically Modified</subject><ispartof>Nature plants, 2018-11, Vol.4 (11), p.930-941</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2018</rights><rights>Copyright Nature Publishing Group Nov 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-4e702a7917fdaf4b7ed8d87a9711132bcac59a94c79b8d5d0dccc45dc09be0f43</citedby><cites>FETCH-LOGICAL-c486t-4e702a7917fdaf4b7ed8d87a9711132bcac59a94c79b8d5d0dccc45dc09be0f43</cites><orcidid>0000-0003-4490-4514 ; 0000-0003-1786-9696</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41477-018-0287-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41477-018-0287-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30374094$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Ding</creatorcontrib><creatorcontrib>Wang, Xia</creatorcontrib><creatorcontrib>Tang, Zhouzhou</creatorcontrib><creatorcontrib>Yuan, Yue</creatorcontrib><creatorcontrib>Xu, Yuantao</creatorcontrib><creatorcontrib>He, Jiaxian</creatorcontrib><creatorcontrib>Jiang, Xiaolin</creatorcontrib><creatorcontrib>Peng, Shu-Ang</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Butelli, Eugenio</creatorcontrib><creatorcontrib>Deng, Xiuxin</creatorcontrib><creatorcontrib>Xu, Qiang</creatorcontrib><title>Subfunctionalization of the Ruby2–Ruby1 gene cluster during the domestication of citrus</title><title>Nature plants</title><addtitle>Nature Plants</addtitle><addtitle>Nat Plants</addtitle><description>The evolution of fruit colour in plants is intriguing. Citrus fruit has repeatedly gained or lost the ability to synthesize anthocyanins. Chinese box orange, a primitive citrus, can accumulate anthocyanins both in its fruits and its leaves. Wild citrus can accumulate anthocyanins in its leaves. In contrast, most cultivated citrus have lost the ability to accumulate anthocyanins. We characterized a novel MYB regulatory gene, Ruby2 , which is adjacent to Ruby1 , a known anthocyanin activator of citrus. Different Ruby2 alleles can have opposite effects on the regulation of anthocyanin biosynthesis. AbRuby2 Full encodes an anthocyanin activator that mainly functions in the pigmented leaves of Chinese box orange. CgRuby2 Short was identified in purple pummelo and encodes an anthocyanin repressor. CgRuby2 Short has lost the ability to activate anthocyanin biosynthesis. However, it retains the ability to interact with the same partner, CgbHLH1, as CgRuby1, thus acting as a passive competitor in the regulatory complex. Further investigation in different citrus species indicated that the Ruby2 – Ruby1 cluster exhibits subfunctionalization among primitive, wild and cultivated citrus. Our study elucidates the regulatory mechanism and evolutionary history of the Ruby2 – Ruby1 cluster in citrus, which are unique and different from that found in Arabidopsis , grape or petunia. Primitive, wild and cultivated citrus have different abilities in synthesizing anthocyanins. The subfunctionalization of the Ruby2–Ruby1 cluster contributes to the variation and evolution of the anthocyanin biosynthesis regulation in citrus.</description><subject>13/1</subject><subject>14/19</subject><subject>38/111</subject><subject>38/39</subject><subject>38/77</subject><subject>631/449/2492</subject><subject>631/449/2667</subject><subject>82/29</subject><subject>82/80</subject><subject>82/83</subject><subject>Alleles</subject><subject>Anthocyanins - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Citrus - genetics</subject><subject>Citrus fruits</subject><subject>Cultivation</subject><subject>Domestication</subject><subject>Fruit cultivation</subject><subject>Fruits</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes, Plant - genetics</subject><subject>Genes, Plant - physiology</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Multigene Family - genetics</subject><subject>Multigene Family - physiology</subject><subject>Phylogeny</subject><subject>Plant Leaves - metabolism</subject><subject>Plant Sciences</subject><subject>Plants, Genetically Modified</subject><issn>2055-0278</issn><issn>2055-0278</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kMtKxDAUhoMozjDOA7iRghs31ZM0bdKlDN5gQPCycBXSJB079DImzWJc-Q6-oU9ia8dRBFfnBL7_T_IhdIjhFEPEzxzFlLEQMA-BcBYmO2hMII67E-O7v_YRmjq3BADM4jhKYB-NIogYhZSO0dO9z3Jfq7ZoalkWr7JfgiYP2mcT3PlsTT7e3vuJg4WpTaBK71pjA-1tUS--KN1UxrWF2kZV0VrvDtBeLktnpps5QY-XFw-z63B-e3UzO5-HivKkDalhQCRLMcu1zGnGjOaaM5kyjHFEMiVVnMqUKpZmXMcatFKKxlpBmhnIaTRBJ0PvyjYvvnuJqAqnTFnK2jTeCYIJI9B18Q49_oMuG2-7f_dUhAmJOSQdhQdK2cY5a3KxskUl7VpgEL16MagXnXrRqxd95mjT7LPK6G3iW3QHkAFwq16csT9X_9_6CXEKj9k</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Huang, Ding</creator><creator>Wang, Xia</creator><creator>Tang, Zhouzhou</creator><creator>Yuan, Yue</creator><creator>Xu, Yuantao</creator><creator>He, Jiaxian</creator><creator>Jiang, Xiaolin</creator><creator>Peng, Shu-Ang</creator><creator>Li, Li</creator><creator>Butelli, Eugenio</creator><creator>Deng, Xiuxin</creator><creator>Xu, Qiang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4490-4514</orcidid><orcidid>https://orcid.org/0000-0003-1786-9696</orcidid></search><sort><creationdate>20181101</creationdate><title>Subfunctionalization of the Ruby2–Ruby1 gene cluster during the domestication of citrus</title><author>Huang, Ding ; Wang, Xia ; Tang, Zhouzhou ; Yuan, Yue ; Xu, Yuantao ; He, Jiaxian ; Jiang, Xiaolin ; Peng, Shu-Ang ; Li, Li ; Butelli, Eugenio ; Deng, Xiuxin ; Xu, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-4e702a7917fdaf4b7ed8d87a9711132bcac59a94c79b8d5d0dccc45dc09be0f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/1</topic><topic>14/19</topic><topic>38/111</topic><topic>38/39</topic><topic>38/77</topic><topic>631/449/2492</topic><topic>631/449/2667</topic><topic>82/29</topic><topic>82/80</topic><topic>82/83</topic><topic>Alleles</topic><topic>Anthocyanins - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Citrus - genetics</topic><topic>Citrus fruits</topic><topic>Cultivation</topic><topic>Domestication</topic><topic>Fruit cultivation</topic><topic>Fruits</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes, Plant - genetics</topic><topic>Genes, Plant - physiology</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Multigene Family - genetics</topic><topic>Multigene Family - physiology</topic><topic>Phylogeny</topic><topic>Plant Leaves - metabolism</topic><topic>Plant Sciences</topic><topic>Plants, Genetically Modified</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Ding</creatorcontrib><creatorcontrib>Wang, Xia</creatorcontrib><creatorcontrib>Tang, Zhouzhou</creatorcontrib><creatorcontrib>Yuan, Yue</creatorcontrib><creatorcontrib>Xu, Yuantao</creatorcontrib><creatorcontrib>He, Jiaxian</creatorcontrib><creatorcontrib>Jiang, Xiaolin</creatorcontrib><creatorcontrib>Peng, Shu-Ang</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Butelli, Eugenio</creatorcontrib><creatorcontrib>Deng, Xiuxin</creatorcontrib><creatorcontrib>Xu, Qiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature plants</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Ding</au><au>Wang, Xia</au><au>Tang, Zhouzhou</au><au>Yuan, Yue</au><au>Xu, Yuantao</au><au>He, Jiaxian</au><au>Jiang, Xiaolin</au><au>Peng, Shu-Ang</au><au>Li, Li</au><au>Butelli, Eugenio</au><au>Deng, Xiuxin</au><au>Xu, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subfunctionalization of the Ruby2–Ruby1 gene cluster during the domestication of citrus</atitle><jtitle>Nature plants</jtitle><stitle>Nature Plants</stitle><addtitle>Nat Plants</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>4</volume><issue>11</issue><spage>930</spage><epage>941</epage><pages>930-941</pages><issn>2055-0278</issn><eissn>2055-0278</eissn><abstract>The evolution of fruit colour in plants is intriguing. Citrus fruit has repeatedly gained or lost the ability to synthesize anthocyanins. Chinese box orange, a primitive citrus, can accumulate anthocyanins both in its fruits and its leaves. Wild citrus can accumulate anthocyanins in its leaves. In contrast, most cultivated citrus have lost the ability to accumulate anthocyanins. We characterized a novel MYB regulatory gene, Ruby2 , which is adjacent to Ruby1 , a known anthocyanin activator of citrus. Different Ruby2 alleles can have opposite effects on the regulation of anthocyanin biosynthesis. AbRuby2 Full encodes an anthocyanin activator that mainly functions in the pigmented leaves of Chinese box orange. CgRuby2 Short was identified in purple pummelo and encodes an anthocyanin repressor. CgRuby2 Short has lost the ability to activate anthocyanin biosynthesis. However, it retains the ability to interact with the same partner, CgbHLH1, as CgRuby1, thus acting as a passive competitor in the regulatory complex. Further investigation in different citrus species indicated that the Ruby2 – Ruby1 cluster exhibits subfunctionalization among primitive, wild and cultivated citrus. Our study elucidates the regulatory mechanism and evolutionary history of the Ruby2 – Ruby1 cluster in citrus, which are unique and different from that found in Arabidopsis , grape or petunia. Primitive, wild and cultivated citrus have different abilities in synthesizing anthocyanins. The subfunctionalization of the Ruby2–Ruby1 cluster contributes to the variation and evolution of the anthocyanin biosynthesis regulation in citrus.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30374094</pmid><doi>10.1038/s41477-018-0287-6</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4490-4514</orcidid><orcidid>https://orcid.org/0000-0003-1786-9696</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2055-0278
ispartof Nature plants, 2018-11, Vol.4 (11), p.930-941
issn 2055-0278
2055-0278
language eng
recordid cdi_proquest_miscellaneous_2127201138
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects 13/1
14/19
38/111
38/39
38/77
631/449/2492
631/449/2667
82/29
82/80
82/83
Alleles
Anthocyanins - metabolism
Biomedical and Life Sciences
Biosynthesis
Citrus - genetics
Citrus fruits
Cultivation
Domestication
Fruit cultivation
Fruits
Gene Expression Regulation, Plant
Genes, Plant - genetics
Genes, Plant - physiology
Leaves
Life Sciences
Multigene Family - genetics
Multigene Family - physiology
Phylogeny
Plant Leaves - metabolism
Plant Sciences
Plants, Genetically Modified
title Subfunctionalization of the Ruby2–Ruby1 gene cluster during the domestication of citrus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T23%3A50%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subfunctionalization%20of%20the%20Ruby2%E2%80%93Ruby1%20gene%20cluster%20during%20the%20domestication%20of%20citrus&rft.jtitle=Nature%20plants&rft.au=Huang,%20Ding&rft.date=2018-11-01&rft.volume=4&rft.issue=11&rft.spage=930&rft.epage=941&rft.pages=930-941&rft.issn=2055-0278&rft.eissn=2055-0278&rft_id=info:doi/10.1038/s41477-018-0287-6&rft_dat=%3Cproquest_cross%3E2131225806%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2131225806&rft_id=info:pmid/30374094&rfr_iscdi=true