Subfunctionalization of the Ruby2–Ruby1 gene cluster during the domestication of citrus
The evolution of fruit colour in plants is intriguing. Citrus fruit has repeatedly gained or lost the ability to synthesize anthocyanins. Chinese box orange, a primitive citrus, can accumulate anthocyanins both in its fruits and its leaves. Wild citrus can accumulate anthocyanins in its leaves. In c...
Gespeichert in:
Veröffentlicht in: | Nature plants 2018-11, Vol.4 (11), p.930-941 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 941 |
---|---|
container_issue | 11 |
container_start_page | 930 |
container_title | Nature plants |
container_volume | 4 |
creator | Huang, Ding Wang, Xia Tang, Zhouzhou Yuan, Yue Xu, Yuantao He, Jiaxian Jiang, Xiaolin Peng, Shu-Ang Li, Li Butelli, Eugenio Deng, Xiuxin Xu, Qiang |
description | The evolution of fruit colour in plants is intriguing. Citrus fruit has repeatedly gained or lost the ability to synthesize anthocyanins. Chinese box orange, a primitive citrus, can accumulate anthocyanins both in its fruits and its leaves. Wild citrus can accumulate anthocyanins in its leaves. In contrast, most cultivated citrus have lost the ability to accumulate anthocyanins. We characterized a novel MYB regulatory gene,
Ruby2
, which is adjacent to
Ruby1
, a known anthocyanin activator of citrus. Different
Ruby2
alleles can have opposite effects on the regulation of anthocyanin biosynthesis.
AbRuby2
Full
encodes an anthocyanin activator that mainly functions in the pigmented leaves of Chinese box orange.
CgRuby2
Short
was identified in purple pummelo and encodes an anthocyanin repressor. CgRuby2
Short
has lost the ability to activate anthocyanin biosynthesis. However, it retains the ability to interact with the same partner, CgbHLH1, as CgRuby1, thus acting as a passive competitor in the regulatory complex. Further investigation in different citrus species indicated that the
Ruby2
–
Ruby1
cluster exhibits subfunctionalization among primitive, wild and cultivated citrus. Our study elucidates the regulatory mechanism and evolutionary history of the
Ruby2
–
Ruby1
cluster in citrus, which are unique and different from that found in
Arabidopsis
, grape or petunia.
Primitive, wild and cultivated citrus have different abilities in synthesizing anthocyanins. The subfunctionalization of the
Ruby2–Ruby1
cluster contributes to the variation and evolution of the anthocyanin biosynthesis regulation in citrus. |
doi_str_mv | 10.1038/s41477-018-0287-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2127201138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2131225806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-4e702a7917fdaf4b7ed8d87a9711132bcac59a94c79b8d5d0dccc45dc09be0f43</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMozjDOA7iRghs31ZM0bdKlDN5gQPCycBXSJB079DImzWJc-Q6-oU9ia8dRBFfnBL7_T_IhdIjhFEPEzxzFlLEQMA-BcBYmO2hMII67E-O7v_YRmjq3BADM4jhKYB-NIogYhZSO0dO9z3Jfq7ZoalkWr7JfgiYP2mcT3PlsTT7e3vuJg4WpTaBK71pjA-1tUS--KN1UxrWF2kZV0VrvDtBeLktnpps5QY-XFw-z63B-e3UzO5-HivKkDalhQCRLMcu1zGnGjOaaM5kyjHFEMiVVnMqUKpZmXMcatFKKxlpBmhnIaTRBJ0PvyjYvvnuJqAqnTFnK2jTeCYIJI9B18Q49_oMuG2-7f_dUhAmJOSQdhQdK2cY5a3KxskUl7VpgEL16MagXnXrRqxd95mjT7LPK6G3iW3QHkAFwq16csT9X_9_6CXEKj9k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2131225806</pqid></control><display><type>article</type><title>Subfunctionalization of the Ruby2–Ruby1 gene cluster during the domestication of citrus</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Huang, Ding ; Wang, Xia ; Tang, Zhouzhou ; Yuan, Yue ; Xu, Yuantao ; He, Jiaxian ; Jiang, Xiaolin ; Peng, Shu-Ang ; Li, Li ; Butelli, Eugenio ; Deng, Xiuxin ; Xu, Qiang</creator><creatorcontrib>Huang, Ding ; Wang, Xia ; Tang, Zhouzhou ; Yuan, Yue ; Xu, Yuantao ; He, Jiaxian ; Jiang, Xiaolin ; Peng, Shu-Ang ; Li, Li ; Butelli, Eugenio ; Deng, Xiuxin ; Xu, Qiang</creatorcontrib><description>The evolution of fruit colour in plants is intriguing. Citrus fruit has repeatedly gained or lost the ability to synthesize anthocyanins. Chinese box orange, a primitive citrus, can accumulate anthocyanins both in its fruits and its leaves. Wild citrus can accumulate anthocyanins in its leaves. In contrast, most cultivated citrus have lost the ability to accumulate anthocyanins. We characterized a novel MYB regulatory gene,
Ruby2
, which is adjacent to
Ruby1
, a known anthocyanin activator of citrus. Different
Ruby2
alleles can have opposite effects on the regulation of anthocyanin biosynthesis.
AbRuby2
Full
encodes an anthocyanin activator that mainly functions in the pigmented leaves of Chinese box orange.
CgRuby2
Short
was identified in purple pummelo and encodes an anthocyanin repressor. CgRuby2
Short
has lost the ability to activate anthocyanin biosynthesis. However, it retains the ability to interact with the same partner, CgbHLH1, as CgRuby1, thus acting as a passive competitor in the regulatory complex. Further investigation in different citrus species indicated that the
Ruby2
–
Ruby1
cluster exhibits subfunctionalization among primitive, wild and cultivated citrus. Our study elucidates the regulatory mechanism and evolutionary history of the
Ruby2
–
Ruby1
cluster in citrus, which are unique and different from that found in
Arabidopsis
, grape or petunia.
Primitive, wild and cultivated citrus have different abilities in synthesizing anthocyanins. The subfunctionalization of the
Ruby2–Ruby1
cluster contributes to the variation and evolution of the anthocyanin biosynthesis regulation in citrus.</description><identifier>ISSN: 2055-0278</identifier><identifier>EISSN: 2055-0278</identifier><identifier>DOI: 10.1038/s41477-018-0287-6</identifier><identifier>PMID: 30374094</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 14/19 ; 38/111 ; 38/39 ; 38/77 ; 631/449/2492 ; 631/449/2667 ; 82/29 ; 82/80 ; 82/83 ; Alleles ; Anthocyanins - metabolism ; Biomedical and Life Sciences ; Biosynthesis ; Citrus - genetics ; Citrus fruits ; Cultivation ; Domestication ; Fruit cultivation ; Fruits ; Gene Expression Regulation, Plant ; Genes, Plant - genetics ; Genes, Plant - physiology ; Leaves ; Life Sciences ; Multigene Family - genetics ; Multigene Family - physiology ; Phylogeny ; Plant Leaves - metabolism ; Plant Sciences ; Plants, Genetically Modified</subject><ispartof>Nature plants, 2018-11, Vol.4 (11), p.930-941</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2018</rights><rights>Copyright Nature Publishing Group Nov 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-4e702a7917fdaf4b7ed8d87a9711132bcac59a94c79b8d5d0dccc45dc09be0f43</citedby><cites>FETCH-LOGICAL-c486t-4e702a7917fdaf4b7ed8d87a9711132bcac59a94c79b8d5d0dccc45dc09be0f43</cites><orcidid>0000-0003-4490-4514 ; 0000-0003-1786-9696</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41477-018-0287-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41477-018-0287-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30374094$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Ding</creatorcontrib><creatorcontrib>Wang, Xia</creatorcontrib><creatorcontrib>Tang, Zhouzhou</creatorcontrib><creatorcontrib>Yuan, Yue</creatorcontrib><creatorcontrib>Xu, Yuantao</creatorcontrib><creatorcontrib>He, Jiaxian</creatorcontrib><creatorcontrib>Jiang, Xiaolin</creatorcontrib><creatorcontrib>Peng, Shu-Ang</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Butelli, Eugenio</creatorcontrib><creatorcontrib>Deng, Xiuxin</creatorcontrib><creatorcontrib>Xu, Qiang</creatorcontrib><title>Subfunctionalization of the Ruby2–Ruby1 gene cluster during the domestication of citrus</title><title>Nature plants</title><addtitle>Nature Plants</addtitle><addtitle>Nat Plants</addtitle><description>The evolution of fruit colour in plants is intriguing. Citrus fruit has repeatedly gained or lost the ability to synthesize anthocyanins. Chinese box orange, a primitive citrus, can accumulate anthocyanins both in its fruits and its leaves. Wild citrus can accumulate anthocyanins in its leaves. In contrast, most cultivated citrus have lost the ability to accumulate anthocyanins. We characterized a novel MYB regulatory gene,
Ruby2
, which is adjacent to
Ruby1
, a known anthocyanin activator of citrus. Different
Ruby2
alleles can have opposite effects on the regulation of anthocyanin biosynthesis.
AbRuby2
Full
encodes an anthocyanin activator that mainly functions in the pigmented leaves of Chinese box orange.
CgRuby2
Short
was identified in purple pummelo and encodes an anthocyanin repressor. CgRuby2
Short
has lost the ability to activate anthocyanin biosynthesis. However, it retains the ability to interact with the same partner, CgbHLH1, as CgRuby1, thus acting as a passive competitor in the regulatory complex. Further investigation in different citrus species indicated that the
Ruby2
–
Ruby1
cluster exhibits subfunctionalization among primitive, wild and cultivated citrus. Our study elucidates the regulatory mechanism and evolutionary history of the
Ruby2
–
Ruby1
cluster in citrus, which are unique and different from that found in
Arabidopsis
, grape or petunia.
Primitive, wild and cultivated citrus have different abilities in synthesizing anthocyanins. The subfunctionalization of the
Ruby2–Ruby1
cluster contributes to the variation and evolution of the anthocyanin biosynthesis regulation in citrus.</description><subject>13/1</subject><subject>14/19</subject><subject>38/111</subject><subject>38/39</subject><subject>38/77</subject><subject>631/449/2492</subject><subject>631/449/2667</subject><subject>82/29</subject><subject>82/80</subject><subject>82/83</subject><subject>Alleles</subject><subject>Anthocyanins - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Citrus - genetics</subject><subject>Citrus fruits</subject><subject>Cultivation</subject><subject>Domestication</subject><subject>Fruit cultivation</subject><subject>Fruits</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes, Plant - genetics</subject><subject>Genes, Plant - physiology</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Multigene Family - genetics</subject><subject>Multigene Family - physiology</subject><subject>Phylogeny</subject><subject>Plant Leaves - metabolism</subject><subject>Plant Sciences</subject><subject>Plants, Genetically Modified</subject><issn>2055-0278</issn><issn>2055-0278</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kMtKxDAUhoMozjDOA7iRghs31ZM0bdKlDN5gQPCycBXSJB079DImzWJc-Q6-oU9ia8dRBFfnBL7_T_IhdIjhFEPEzxzFlLEQMA-BcBYmO2hMII67E-O7v_YRmjq3BADM4jhKYB-NIogYhZSO0dO9z3Jfq7ZoalkWr7JfgiYP2mcT3PlsTT7e3vuJg4WpTaBK71pjA-1tUS--KN1UxrWF2kZV0VrvDtBeLktnpps5QY-XFw-z63B-e3UzO5-HivKkDalhQCRLMcu1zGnGjOaaM5kyjHFEMiVVnMqUKpZmXMcatFKKxlpBmhnIaTRBJ0PvyjYvvnuJqAqnTFnK2jTeCYIJI9B18Q49_oMuG2-7f_dUhAmJOSQdhQdK2cY5a3KxskUl7VpgEL16MagXnXrRqxd95mjT7LPK6G3iW3QHkAFwq16csT9X_9_6CXEKj9k</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Huang, Ding</creator><creator>Wang, Xia</creator><creator>Tang, Zhouzhou</creator><creator>Yuan, Yue</creator><creator>Xu, Yuantao</creator><creator>He, Jiaxian</creator><creator>Jiang, Xiaolin</creator><creator>Peng, Shu-Ang</creator><creator>Li, Li</creator><creator>Butelli, Eugenio</creator><creator>Deng, Xiuxin</creator><creator>Xu, Qiang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4490-4514</orcidid><orcidid>https://orcid.org/0000-0003-1786-9696</orcidid></search><sort><creationdate>20181101</creationdate><title>Subfunctionalization of the Ruby2–Ruby1 gene cluster during the domestication of citrus</title><author>Huang, Ding ; Wang, Xia ; Tang, Zhouzhou ; Yuan, Yue ; Xu, Yuantao ; He, Jiaxian ; Jiang, Xiaolin ; Peng, Shu-Ang ; Li, Li ; Butelli, Eugenio ; Deng, Xiuxin ; Xu, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-4e702a7917fdaf4b7ed8d87a9711132bcac59a94c79b8d5d0dccc45dc09be0f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/1</topic><topic>14/19</topic><topic>38/111</topic><topic>38/39</topic><topic>38/77</topic><topic>631/449/2492</topic><topic>631/449/2667</topic><topic>82/29</topic><topic>82/80</topic><topic>82/83</topic><topic>Alleles</topic><topic>Anthocyanins - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Citrus - genetics</topic><topic>Citrus fruits</topic><topic>Cultivation</topic><topic>Domestication</topic><topic>Fruit cultivation</topic><topic>Fruits</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes, Plant - genetics</topic><topic>Genes, Plant - physiology</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Multigene Family - genetics</topic><topic>Multigene Family - physiology</topic><topic>Phylogeny</topic><topic>Plant Leaves - metabolism</topic><topic>Plant Sciences</topic><topic>Plants, Genetically Modified</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Ding</creatorcontrib><creatorcontrib>Wang, Xia</creatorcontrib><creatorcontrib>Tang, Zhouzhou</creatorcontrib><creatorcontrib>Yuan, Yue</creatorcontrib><creatorcontrib>Xu, Yuantao</creatorcontrib><creatorcontrib>He, Jiaxian</creatorcontrib><creatorcontrib>Jiang, Xiaolin</creatorcontrib><creatorcontrib>Peng, Shu-Ang</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Butelli, Eugenio</creatorcontrib><creatorcontrib>Deng, Xiuxin</creatorcontrib><creatorcontrib>Xu, Qiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature plants</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Ding</au><au>Wang, Xia</au><au>Tang, Zhouzhou</au><au>Yuan, Yue</au><au>Xu, Yuantao</au><au>He, Jiaxian</au><au>Jiang, Xiaolin</au><au>Peng, Shu-Ang</au><au>Li, Li</au><au>Butelli, Eugenio</au><au>Deng, Xiuxin</au><au>Xu, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subfunctionalization of the Ruby2–Ruby1 gene cluster during the domestication of citrus</atitle><jtitle>Nature plants</jtitle><stitle>Nature Plants</stitle><addtitle>Nat Plants</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>4</volume><issue>11</issue><spage>930</spage><epage>941</epage><pages>930-941</pages><issn>2055-0278</issn><eissn>2055-0278</eissn><abstract>The evolution of fruit colour in plants is intriguing. Citrus fruit has repeatedly gained or lost the ability to synthesize anthocyanins. Chinese box orange, a primitive citrus, can accumulate anthocyanins both in its fruits and its leaves. Wild citrus can accumulate anthocyanins in its leaves. In contrast, most cultivated citrus have lost the ability to accumulate anthocyanins. We characterized a novel MYB regulatory gene,
Ruby2
, which is adjacent to
Ruby1
, a known anthocyanin activator of citrus. Different
Ruby2
alleles can have opposite effects on the regulation of anthocyanin biosynthesis.
AbRuby2
Full
encodes an anthocyanin activator that mainly functions in the pigmented leaves of Chinese box orange.
CgRuby2
Short
was identified in purple pummelo and encodes an anthocyanin repressor. CgRuby2
Short
has lost the ability to activate anthocyanin biosynthesis. However, it retains the ability to interact with the same partner, CgbHLH1, as CgRuby1, thus acting as a passive competitor in the regulatory complex. Further investigation in different citrus species indicated that the
Ruby2
–
Ruby1
cluster exhibits subfunctionalization among primitive, wild and cultivated citrus. Our study elucidates the regulatory mechanism and evolutionary history of the
Ruby2
–
Ruby1
cluster in citrus, which are unique and different from that found in
Arabidopsis
, grape or petunia.
Primitive, wild and cultivated citrus have different abilities in synthesizing anthocyanins. The subfunctionalization of the
Ruby2–Ruby1
cluster contributes to the variation and evolution of the anthocyanin biosynthesis regulation in citrus.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30374094</pmid><doi>10.1038/s41477-018-0287-6</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4490-4514</orcidid><orcidid>https://orcid.org/0000-0003-1786-9696</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2055-0278 |
ispartof | Nature plants, 2018-11, Vol.4 (11), p.930-941 |
issn | 2055-0278 2055-0278 |
language | eng |
recordid | cdi_proquest_miscellaneous_2127201138 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | 13/1 14/19 38/111 38/39 38/77 631/449/2492 631/449/2667 82/29 82/80 82/83 Alleles Anthocyanins - metabolism Biomedical and Life Sciences Biosynthesis Citrus - genetics Citrus fruits Cultivation Domestication Fruit cultivation Fruits Gene Expression Regulation, Plant Genes, Plant - genetics Genes, Plant - physiology Leaves Life Sciences Multigene Family - genetics Multigene Family - physiology Phylogeny Plant Leaves - metabolism Plant Sciences Plants, Genetically Modified |
title | Subfunctionalization of the Ruby2–Ruby1 gene cluster during the domestication of citrus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T23%3A50%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subfunctionalization%20of%20the%20Ruby2%E2%80%93Ruby1%20gene%20cluster%20during%20the%20domestication%20of%20citrus&rft.jtitle=Nature%20plants&rft.au=Huang,%20Ding&rft.date=2018-11-01&rft.volume=4&rft.issue=11&rft.spage=930&rft.epage=941&rft.pages=930-941&rft.issn=2055-0278&rft.eissn=2055-0278&rft_id=info:doi/10.1038/s41477-018-0287-6&rft_dat=%3Cproquest_cross%3E2131225806%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2131225806&rft_id=info:pmid/30374094&rfr_iscdi=true |