A derivation of Maxwell's equations using the Heaviside notation

Maxwell's four differential equations describing electromagnetism are among the most famous equations in science. Feynman said that they provide four of the seven fundamental laws of classical physics. In this paper, we derive Maxwell's equations using a well-established approach for deriv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2018-10, Vol.376 (2134), p.20170447
1. Verfasser: Hampshire, Damian P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2134
container_start_page 20170447
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
container_volume 376
creator Hampshire, Damian P.
description Maxwell's four differential equations describing electromagnetism are among the most famous equations in science. Feynman said that they provide four of the seven fundamental laws of classical physics. In this paper, we derive Maxwell's equations using a well-established approach for deriving time-dependent differential equations from static laws. The derivation uses the standard Heaviside notation. It assumes conservation of charge and that Coulomb's law of electrostatics and Ampere's law of magnetostatics are both correct as a function of time when they are limited to describing a local system. It is analogous to deriving the differential equation of motion for sound, assuming conservation of mass, Newton's second law of motion and that Hooke's static law of elasticity holds for a system in local equilibrium. This work demonstrates that it is the conservation of charge that couples time-varying E-fields and B-fields and that Faraday's Law can be derived without any relativistic assumptions about Lorentz invariance. It also widens the choice of axioms, or starting points, for understanding electromagnetism. This article is part of the theme issue 'Celebrating 125 years of Oliver Heaviside's 'Electromagnetic Theory''.
doi_str_mv 10.1098/rsta.2017.0447
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2127199911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127199911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-6b870ce620a56b4e31669b9ecf5298b4a30f76af17f8aef965bbe2948c72c5f13</originalsourceid><addsrcrecordid>eNp9kMtv1DAQxq0K1Be99ohyg0sWv2LHF8Sqog-pCAmKxG3keMety268tZOF7V_fZLdUVAhOtmc-f9_Mj5BjRieMmvpdyp2dcMr0hEqpd8g-k5qV3Cj-YrgLJcuKiu975CDnW0oZUxXfJXuCCi2M0Pvkw7SYYQor24XYFtEXn-yvnzifv8kF3vWbai76HNrrorvB4hztKuQww6KN3ab7irz0dp7x6PE8JN9OP16dnJeXn88uTqaXpauE7ErV1Jo6VJzaSjUSBVPKNAadr7ipG2kF9VpZz7SvLXqjqqZBbmTtNHeVZ-KQvN_6LvtmgTOHbZfsHJYpLGxaQ7QBnnfacAPXcQWKC15pMxi8fTRI8a7H3MEiZDesaluMfQbOuGbGGDZmTbZSl2LOCf1TDKMwYocRO4zYYcQ-fHj953BP8t-cB8GPrSDF9UApuoDdGm5jn9rhCV--Xk1XQqvAmZBAa8Go5jUXcB-W26yhCSHnHmEjeZ7_9zjif2n_WOIBkya0GA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127199911</pqid></control><display><type>article</type><title>A derivation of Maxwell's equations using the Heaviside notation</title><source>JSTOR Mathematics &amp; Statistics</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hampshire, Damian P.</creator><creatorcontrib>Hampshire, Damian P.</creatorcontrib><description>Maxwell's four differential equations describing electromagnetism are among the most famous equations in science. Feynman said that they provide four of the seven fundamental laws of classical physics. In this paper, we derive Maxwell's equations using a well-established approach for deriving time-dependent differential equations from static laws. The derivation uses the standard Heaviside notation. It assumes conservation of charge and that Coulomb's law of electrostatics and Ampere's law of magnetostatics are both correct as a function of time when they are limited to describing a local system. It is analogous to deriving the differential equation of motion for sound, assuming conservation of mass, Newton's second law of motion and that Hooke's static law of elasticity holds for a system in local equilibrium. This work demonstrates that it is the conservation of charge that couples time-varying E-fields and B-fields and that Faraday's Law can be derived without any relativistic assumptions about Lorentz invariance. It also widens the choice of axioms, or starting points, for understanding electromagnetism. This article is part of the theme issue 'Celebrating 125 years of Oliver Heaviside's 'Electromagnetic Theory''.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2017.0447</identifier><identifier>PMID: 30373937</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><subject>Ampere's Law ; Charge Conservation ; Coulomb's Law ; Electromagnetism ; Heaviside ; Maxwell's Equations</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2018-10, Vol.376 (2134), p.20170447</ispartof><rights>2018 The Authors.</rights><rights>2018 The Authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-6b870ce620a56b4e31669b9ecf5298b4a30f76af17f8aef965bbe2948c72c5f13</citedby><cites>FETCH-LOGICAL-c534t-6b870ce620a56b4e31669b9ecf5298b4a30f76af17f8aef965bbe2948c72c5f13</cites><orcidid>0000-0001-8552-8514</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30373937$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hampshire, Damian P.</creatorcontrib><title>A derivation of Maxwell's equations using the Heaviside notation</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>Phil. Trans. R. Soc. A</addtitle><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><description>Maxwell's four differential equations describing electromagnetism are among the most famous equations in science. Feynman said that they provide four of the seven fundamental laws of classical physics. In this paper, we derive Maxwell's equations using a well-established approach for deriving time-dependent differential equations from static laws. The derivation uses the standard Heaviside notation. It assumes conservation of charge and that Coulomb's law of electrostatics and Ampere's law of magnetostatics are both correct as a function of time when they are limited to describing a local system. It is analogous to deriving the differential equation of motion for sound, assuming conservation of mass, Newton's second law of motion and that Hooke's static law of elasticity holds for a system in local equilibrium. This work demonstrates that it is the conservation of charge that couples time-varying E-fields and B-fields and that Faraday's Law can be derived without any relativistic assumptions about Lorentz invariance. It also widens the choice of axioms, or starting points, for understanding electromagnetism. This article is part of the theme issue 'Celebrating 125 years of Oliver Heaviside's 'Electromagnetic Theory''.</description><subject>Ampere's Law</subject><subject>Charge Conservation</subject><subject>Coulomb's Law</subject><subject>Electromagnetism</subject><subject>Heaviside</subject><subject>Maxwell's Equations</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtv1DAQxq0K1Be99ohyg0sWv2LHF8Sqog-pCAmKxG3keMety268tZOF7V_fZLdUVAhOtmc-f9_Mj5BjRieMmvpdyp2dcMr0hEqpd8g-k5qV3Cj-YrgLJcuKiu975CDnW0oZUxXfJXuCCi2M0Pvkw7SYYQor24XYFtEXn-yvnzifv8kF3vWbai76HNrrorvB4hztKuQww6KN3ab7irz0dp7x6PE8JN9OP16dnJeXn88uTqaXpauE7ErV1Jo6VJzaSjUSBVPKNAadr7ipG2kF9VpZz7SvLXqjqqZBbmTtNHeVZ-KQvN_6LvtmgTOHbZfsHJYpLGxaQ7QBnnfacAPXcQWKC15pMxi8fTRI8a7H3MEiZDesaluMfQbOuGbGGDZmTbZSl2LOCf1TDKMwYocRO4zYYcQ-fHj953BP8t-cB8GPrSDF9UApuoDdGm5jn9rhCV--Xk1XQqvAmZBAa8Go5jUXcB-W26yhCSHnHmEjeZ7_9zjif2n_WOIBkya0GA</recordid><startdate>20181029</startdate><enddate>20181029</enddate><creator>Hampshire, Damian P.</creator><general>The Royal Society Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8552-8514</orcidid></search><sort><creationdate>20181029</creationdate><title>A derivation of Maxwell's equations using the Heaviside notation</title><author>Hampshire, Damian P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-6b870ce620a56b4e31669b9ecf5298b4a30f76af17f8aef965bbe2948c72c5f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Ampere's Law</topic><topic>Charge Conservation</topic><topic>Coulomb's Law</topic><topic>Electromagnetism</topic><topic>Heaviside</topic><topic>Maxwell's Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hampshire, Damian P.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hampshire, Damian P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A derivation of Maxwell's equations using the Heaviside notation</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><stitle>Phil. Trans. R. Soc. A</stitle><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><date>2018-10-29</date><risdate>2018</risdate><volume>376</volume><issue>2134</issue><spage>20170447</spage><pages>20170447-</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>Maxwell's four differential equations describing electromagnetism are among the most famous equations in science. Feynman said that they provide four of the seven fundamental laws of classical physics. In this paper, we derive Maxwell's equations using a well-established approach for deriving time-dependent differential equations from static laws. The derivation uses the standard Heaviside notation. It assumes conservation of charge and that Coulomb's law of electrostatics and Ampere's law of magnetostatics are both correct as a function of time when they are limited to describing a local system. It is analogous to deriving the differential equation of motion for sound, assuming conservation of mass, Newton's second law of motion and that Hooke's static law of elasticity holds for a system in local equilibrium. This work demonstrates that it is the conservation of charge that couples time-varying E-fields and B-fields and that Faraday's Law can be derived without any relativistic assumptions about Lorentz invariance. It also widens the choice of axioms, or starting points, for understanding electromagnetism. This article is part of the theme issue 'Celebrating 125 years of Oliver Heaviside's 'Electromagnetic Theory''.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>30373937</pmid><doi>10.1098/rsta.2017.0447</doi><orcidid>https://orcid.org/0000-0001-8552-8514</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-503X
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2018-10, Vol.376 (2134), p.20170447
issn 1364-503X
1471-2962
language eng
recordid cdi_proquest_miscellaneous_2127199911
source JSTOR Mathematics & Statistics; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Ampere's Law
Charge Conservation
Coulomb's Law
Electromagnetism
Heaviside
Maxwell's Equations
title A derivation of Maxwell's equations using the Heaviside notation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A01%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20derivation%20of%20Maxwell's%20equations%20using%20the%20Heaviside%20notation&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Hampshire,%20Damian%20P.&rft.date=2018-10-29&rft.volume=376&rft.issue=2134&rft.spage=20170447&rft.pages=20170447-&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2017.0447&rft_dat=%3Cproquest_pubme%3E2127199911%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127199911&rft_id=info:pmid/30373937&rfr_iscdi=true