A derivation of Maxwell's equations using the Heaviside notation
Maxwell's four differential equations describing electromagnetism are among the most famous equations in science. Feynman said that they provide four of the seven fundamental laws of classical physics. In this paper, we derive Maxwell's equations using a well-established approach for deriv...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2018-10, Vol.376 (2134), p.20170447 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2134 |
container_start_page | 20170447 |
container_title | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences |
container_volume | 376 |
creator | Hampshire, Damian P. |
description | Maxwell's four differential equations describing electromagnetism are among the most famous equations in science. Feynman said that they provide four of the seven fundamental laws of classical physics. In this paper, we derive Maxwell's equations using a well-established approach for deriving time-dependent differential equations from static laws. The derivation uses the standard Heaviside notation. It assumes conservation of charge and that Coulomb's law of electrostatics and Ampere's law of magnetostatics are both correct as a function of time when they are limited to describing a local system. It is analogous to deriving the differential equation of motion for sound, assuming conservation of mass, Newton's second law of motion and that Hooke's static law of elasticity holds for a system in local equilibrium. This work demonstrates that it is the conservation of charge that couples time-varying E-fields and B-fields and that Faraday's Law can be derived without any relativistic assumptions about Lorentz invariance. It also widens the choice of axioms, or starting points, for understanding electromagnetism.
This article is part of the theme issue 'Celebrating 125 years of Oliver Heaviside's 'Electromagnetic Theory''. |
doi_str_mv | 10.1098/rsta.2017.0447 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2127199911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127199911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-6b870ce620a56b4e31669b9ecf5298b4a30f76af17f8aef965bbe2948c72c5f13</originalsourceid><addsrcrecordid>eNp9kMtv1DAQxq0K1Be99ohyg0sWv2LHF8Sqog-pCAmKxG3keMety268tZOF7V_fZLdUVAhOtmc-f9_Mj5BjRieMmvpdyp2dcMr0hEqpd8g-k5qV3Cj-YrgLJcuKiu975CDnW0oZUxXfJXuCCi2M0Pvkw7SYYQor24XYFtEXn-yvnzifv8kF3vWbai76HNrrorvB4hztKuQww6KN3ab7irz0dp7x6PE8JN9OP16dnJeXn88uTqaXpauE7ErV1Jo6VJzaSjUSBVPKNAadr7ipG2kF9VpZz7SvLXqjqqZBbmTtNHeVZ-KQvN_6LvtmgTOHbZfsHJYpLGxaQ7QBnnfacAPXcQWKC15pMxi8fTRI8a7H3MEiZDesaluMfQbOuGbGGDZmTbZSl2LOCf1TDKMwYocRO4zYYcQ-fHj953BP8t-cB8GPrSDF9UApuoDdGm5jn9rhCV--Xk1XQqvAmZBAa8Go5jUXcB-W26yhCSHnHmEjeZ7_9zjif2n_WOIBkya0GA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127199911</pqid></control><display><type>article</type><title>A derivation of Maxwell's equations using the Heaviside notation</title><source>JSTOR Mathematics & Statistics</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hampshire, Damian P.</creator><creatorcontrib>Hampshire, Damian P.</creatorcontrib><description>Maxwell's four differential equations describing electromagnetism are among the most famous equations in science. Feynman said that they provide four of the seven fundamental laws of classical physics. In this paper, we derive Maxwell's equations using a well-established approach for deriving time-dependent differential equations from static laws. The derivation uses the standard Heaviside notation. It assumes conservation of charge and that Coulomb's law of electrostatics and Ampere's law of magnetostatics are both correct as a function of time when they are limited to describing a local system. It is analogous to deriving the differential equation of motion for sound, assuming conservation of mass, Newton's second law of motion and that Hooke's static law of elasticity holds for a system in local equilibrium. This work demonstrates that it is the conservation of charge that couples time-varying E-fields and B-fields and that Faraday's Law can be derived without any relativistic assumptions about Lorentz invariance. It also widens the choice of axioms, or starting points, for understanding electromagnetism.
This article is part of the theme issue 'Celebrating 125 years of Oliver Heaviside's 'Electromagnetic Theory''.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2017.0447</identifier><identifier>PMID: 30373937</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><subject>Ampere's Law ; Charge Conservation ; Coulomb's Law ; Electromagnetism ; Heaviside ; Maxwell's Equations</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2018-10, Vol.376 (2134), p.20170447</ispartof><rights>2018 The Authors.</rights><rights>2018 The Authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-6b870ce620a56b4e31669b9ecf5298b4a30f76af17f8aef965bbe2948c72c5f13</citedby><cites>FETCH-LOGICAL-c534t-6b870ce620a56b4e31669b9ecf5298b4a30f76af17f8aef965bbe2948c72c5f13</cites><orcidid>0000-0001-8552-8514</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30373937$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hampshire, Damian P.</creatorcontrib><title>A derivation of Maxwell's equations using the Heaviside notation</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>Phil. Trans. R. Soc. A</addtitle><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><description>Maxwell's four differential equations describing electromagnetism are among the most famous equations in science. Feynman said that they provide four of the seven fundamental laws of classical physics. In this paper, we derive Maxwell's equations using a well-established approach for deriving time-dependent differential equations from static laws. The derivation uses the standard Heaviside notation. It assumes conservation of charge and that Coulomb's law of electrostatics and Ampere's law of magnetostatics are both correct as a function of time when they are limited to describing a local system. It is analogous to deriving the differential equation of motion for sound, assuming conservation of mass, Newton's second law of motion and that Hooke's static law of elasticity holds for a system in local equilibrium. This work demonstrates that it is the conservation of charge that couples time-varying E-fields and B-fields and that Faraday's Law can be derived without any relativistic assumptions about Lorentz invariance. It also widens the choice of axioms, or starting points, for understanding electromagnetism.
This article is part of the theme issue 'Celebrating 125 years of Oliver Heaviside's 'Electromagnetic Theory''.</description><subject>Ampere's Law</subject><subject>Charge Conservation</subject><subject>Coulomb's Law</subject><subject>Electromagnetism</subject><subject>Heaviside</subject><subject>Maxwell's Equations</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtv1DAQxq0K1Be99ohyg0sWv2LHF8Sqog-pCAmKxG3keMety268tZOF7V_fZLdUVAhOtmc-f9_Mj5BjRieMmvpdyp2dcMr0hEqpd8g-k5qV3Cj-YrgLJcuKiu975CDnW0oZUxXfJXuCCi2M0Pvkw7SYYQor24XYFtEXn-yvnzifv8kF3vWbai76HNrrorvB4hztKuQww6KN3ab7irz0dp7x6PE8JN9OP16dnJeXn88uTqaXpauE7ErV1Jo6VJzaSjUSBVPKNAadr7ipG2kF9VpZz7SvLXqjqqZBbmTtNHeVZ-KQvN_6LvtmgTOHbZfsHJYpLGxaQ7QBnnfacAPXcQWKC15pMxi8fTRI8a7H3MEiZDesaluMfQbOuGbGGDZmTbZSl2LOCf1TDKMwYocRO4zYYcQ-fHj953BP8t-cB8GPrSDF9UApuoDdGm5jn9rhCV--Xk1XQqvAmZBAa8Go5jUXcB-W26yhCSHnHmEjeZ7_9zjif2n_WOIBkya0GA</recordid><startdate>20181029</startdate><enddate>20181029</enddate><creator>Hampshire, Damian P.</creator><general>The Royal Society Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8552-8514</orcidid></search><sort><creationdate>20181029</creationdate><title>A derivation of Maxwell's equations using the Heaviside notation</title><author>Hampshire, Damian P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-6b870ce620a56b4e31669b9ecf5298b4a30f76af17f8aef965bbe2948c72c5f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Ampere's Law</topic><topic>Charge Conservation</topic><topic>Coulomb's Law</topic><topic>Electromagnetism</topic><topic>Heaviside</topic><topic>Maxwell's Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hampshire, Damian P.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hampshire, Damian P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A derivation of Maxwell's equations using the Heaviside notation</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><stitle>Phil. Trans. R. Soc. A</stitle><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><date>2018-10-29</date><risdate>2018</risdate><volume>376</volume><issue>2134</issue><spage>20170447</spage><pages>20170447-</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>Maxwell's four differential equations describing electromagnetism are among the most famous equations in science. Feynman said that they provide four of the seven fundamental laws of classical physics. In this paper, we derive Maxwell's equations using a well-established approach for deriving time-dependent differential equations from static laws. The derivation uses the standard Heaviside notation. It assumes conservation of charge and that Coulomb's law of electrostatics and Ampere's law of magnetostatics are both correct as a function of time when they are limited to describing a local system. It is analogous to deriving the differential equation of motion for sound, assuming conservation of mass, Newton's second law of motion and that Hooke's static law of elasticity holds for a system in local equilibrium. This work demonstrates that it is the conservation of charge that couples time-varying E-fields and B-fields and that Faraday's Law can be derived without any relativistic assumptions about Lorentz invariance. It also widens the choice of axioms, or starting points, for understanding electromagnetism.
This article is part of the theme issue 'Celebrating 125 years of Oliver Heaviside's 'Electromagnetic Theory''.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>30373937</pmid><doi>10.1098/rsta.2017.0447</doi><orcidid>https://orcid.org/0000-0001-8552-8514</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-503X |
ispartof | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2018-10, Vol.376 (2134), p.20170447 |
issn | 1364-503X 1471-2962 |
language | eng |
recordid | cdi_proquest_miscellaneous_2127199911 |
source | JSTOR Mathematics & Statistics; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Ampere's Law Charge Conservation Coulomb's Law Electromagnetism Heaviside Maxwell's Equations |
title | A derivation of Maxwell's equations using the Heaviside notation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A01%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20derivation%20of%20Maxwell's%20equations%20using%20the%20Heaviside%20notation&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Hampshire,%20Damian%20P.&rft.date=2018-10-29&rft.volume=376&rft.issue=2134&rft.spage=20170447&rft.pages=20170447-&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2017.0447&rft_dat=%3Cproquest_pubme%3E2127199911%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127199911&rft_id=info:pmid/30373937&rfr_iscdi=true |