Omega‐3 fatty acids regulate plasticity in distinct hippocampal glutamatergic synapses

Dietary omega‐3 fatty acids accumulate and are actively retained in central nervous system membranes, mainly in synapses, dendrites and photoreceptors. Despite this selective enrichment, their impact on synaptic function and plasticity has not been fully determined at the molecular level. In this st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European journal of neuroscience 2019-01, Vol.49 (1), p.40-50
Hauptverfasser: Aryal, Sanjay, Hussain, Suleman, Drevon, Christian A., Nagelhus, Erlend, Hvalby, Øyvind, Jensen, Vidar, Walaas, Sven Ivar, Davanger, Svend
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 50
container_issue 1
container_start_page 40
container_title The European journal of neuroscience
container_volume 49
creator Aryal, Sanjay
Hussain, Suleman
Drevon, Christian A.
Nagelhus, Erlend
Hvalby, Øyvind
Jensen, Vidar
Walaas, Sven Ivar
Davanger, Svend
description Dietary omega‐3 fatty acids accumulate and are actively retained in central nervous system membranes, mainly in synapses, dendrites and photoreceptors. Despite this selective enrichment, their impact on synaptic function and plasticity has not been fully determined at the molecular level. In this study, we explored the impact of omega‐3 fatty acid deficiency on synaptic function in the hippocampus. Dietary omega‐3 fatty acid deficiency for 5 months after weaning led to a 65% reduction in the concentration of docosahexaenoic acid in whole brain synaptosomal phospholipids with no impact on global dopaminergic or serotonergic turnover. We observed reduced concentrations of glutamate receptor subunits, including GluA1, GluA2 and NR2B, and synaptic vesicle proteins synaptophysin and synaptotagmin 1 in hippocampal synaptosomes of omega‐3 fatty acid‐deficient mice as compared to the omega‐3 fatty acid rich group. In contrast, an increased concentration of neuronal inositol 1,4,5‐trisphosphate‐receptor (IP3‐R) was observed in the deficient group. Furthermore, omega‐3 fatty acid deficiency reduced the long‐term potentiation (LTP) in stratum oriens of the hippocampal CA1 area, but not in stratum radiatum. Thus, omega‐3 fatty acids seem to have specific effects in distinct subsets of glutamatergic synapses, suggesting specific molecular interactions in addition to altering plasma membrane properties on a more global scale. Dietary omega‐3 fatty acids are concentrated in neuronal synapses and dendrites. Their impact on synaptic function has not been determined at the molecular level. We found reduced concentrations of glutamate receptor subunits (GluA1, GluA2, NR2B) in hippocampal synaptosomes in omega‐3 fatty acid‐deficient mice. Long‐term potentiation was reduced in the stratum oriens of the CA1 area. Thus, omega‐3 fatty acids seem to have specific molecular interactions with synaptic glutamate receptors.
doi_str_mv 10.1111/ejn.14224
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2126916666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2170868302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3534-c9e6bfe2459be32b2a7de9ad5e1642c75923505b153923676361ca8dec79ed933</originalsourceid><addsrcrecordid>eNp10LtOwzAUBmALgWgpDLwAisQCQ1pfYiceUVVuqugCUrfIcU6Kq9yIE6FsPALPyJNgSGFA4iy25U-_jn6ETgmeEjcz2JZTElAa7KExCQT2JRfRPhpjyZkfEbEeoSNrtxjjSAT8EI0YZiLkjI3RelXARn28vTMvU23be0qb1HoNbLpcteDVubKt0cb9mNJLjXuUuvWeTV1XWhW1yr1N3rWqcLjZGO3ZvlS1BXuMDjKVWzjZnRP0dL14nN_6y9XN3fxq6WvGWeBrCSLJgAZcJsBoQlWYglQpByICqkMuKeOYJ4QzdxOhYIJoFaWgQwmpZGyCLobcuqleOrBtXBirIc9VCVVnY0qokES4cfT8D91WXVO67ZwKXTcRw9Spy0HpprK2gSyuG1Oopo8Jjr_qjl3d8Xfdzp7tErukgPRX_vTrwGwAryaH_v-keHH_MER-Agw9iig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2170868302</pqid></control><display><type>article</type><title>Omega‐3 fatty acids regulate plasticity in distinct hippocampal glutamatergic synapses</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Aryal, Sanjay ; Hussain, Suleman ; Drevon, Christian A. ; Nagelhus, Erlend ; Hvalby, Øyvind ; Jensen, Vidar ; Walaas, Sven Ivar ; Davanger, Svend</creator><creatorcontrib>Aryal, Sanjay ; Hussain, Suleman ; Drevon, Christian A. ; Nagelhus, Erlend ; Hvalby, Øyvind ; Jensen, Vidar ; Walaas, Sven Ivar ; Davanger, Svend</creatorcontrib><description>Dietary omega‐3 fatty acids accumulate and are actively retained in central nervous system membranes, mainly in synapses, dendrites and photoreceptors. Despite this selective enrichment, their impact on synaptic function and plasticity has not been fully determined at the molecular level. In this study, we explored the impact of omega‐3 fatty acid deficiency on synaptic function in the hippocampus. Dietary omega‐3 fatty acid deficiency for 5 months after weaning led to a 65% reduction in the concentration of docosahexaenoic acid in whole brain synaptosomal phospholipids with no impact on global dopaminergic or serotonergic turnover. We observed reduced concentrations of glutamate receptor subunits, including GluA1, GluA2 and NR2B, and synaptic vesicle proteins synaptophysin and synaptotagmin 1 in hippocampal synaptosomes of omega‐3 fatty acid‐deficient mice as compared to the omega‐3 fatty acid rich group. In contrast, an increased concentration of neuronal inositol 1,4,5‐trisphosphate‐receptor (IP3‐R) was observed in the deficient group. Furthermore, omega‐3 fatty acid deficiency reduced the long‐term potentiation (LTP) in stratum oriens of the hippocampal CA1 area, but not in stratum radiatum. Thus, omega‐3 fatty acids seem to have specific effects in distinct subsets of glutamatergic synapses, suggesting specific molecular interactions in addition to altering plasma membrane properties on a more global scale. Dietary omega‐3 fatty acids are concentrated in neuronal synapses and dendrites. Their impact on synaptic function has not been determined at the molecular level. We found reduced concentrations of glutamate receptor subunits (GluA1, GluA2, NR2B) in hippocampal synaptosomes in omega‐3 fatty acid‐deficient mice. Long‐term potentiation was reduced in the stratum oriens of the CA1 area. Thus, omega‐3 fatty acids seem to have specific molecular interactions with synaptic glutamate receptors.</description><identifier>ISSN: 0953-816X</identifier><identifier>EISSN: 1460-9568</identifier><identifier>DOI: 10.1111/ejn.14224</identifier><identifier>PMID: 30367533</identifier><language>eng</language><publisher>France: Wiley Subscription Services, Inc</publisher><subject>Animals ; Central nervous system ; Dendrites ; Docosahexaenoic acid ; Dopamine - metabolism ; Dopamine receptors ; Excitatory Postsynaptic Potentials ; Fatty acids ; Fatty Acids, Omega-3 - administration &amp; dosage ; Female ; Glutamate receptors ; Glutamatergic transmission ; Hippocampal plasticity ; Hippocampus ; Hippocampus - drug effects ; Hippocampus - metabolism ; Hippocampus - physiology ; Inositol 1,4,5-trisphosphate receptors ; IP3‐R ; Long-term potentiation ; Long-Term Potentiation - drug effects ; LTP ; Male ; Mice, Inbred C57BL ; omega‐3 fatty acids ; Phospholipids ; Photoreceptors ; Receptors, Glutamate - physiology ; Serotonin - metabolism ; Stratum radiatum ; Synapses ; Synapses - drug effects ; Synapses - physiology ; Synaptic plasticity ; Synaptophysin ; Synaptosomes ; Synaptosomes - metabolism ; Synaptotagmin ; Weaning</subject><ispartof>The European journal of neuroscience, 2019-01, Vol.49 (1), p.40-50</ispartof><rights>2018 Federation of European Neuroscience Societies and John Wiley &amp; Sons Ltd</rights><rights>2018 Federation of European Neuroscience Societies and John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2019 Federation of European Neuroscience Societies and John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3534-c9e6bfe2459be32b2a7de9ad5e1642c75923505b153923676361ca8dec79ed933</citedby><cites>FETCH-LOGICAL-c3534-c9e6bfe2459be32b2a7de9ad5e1642c75923505b153923676361ca8dec79ed933</cites><orcidid>0000-0002-1489-037X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fejn.14224$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fejn.14224$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30367533$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aryal, Sanjay</creatorcontrib><creatorcontrib>Hussain, Suleman</creatorcontrib><creatorcontrib>Drevon, Christian A.</creatorcontrib><creatorcontrib>Nagelhus, Erlend</creatorcontrib><creatorcontrib>Hvalby, Øyvind</creatorcontrib><creatorcontrib>Jensen, Vidar</creatorcontrib><creatorcontrib>Walaas, Sven Ivar</creatorcontrib><creatorcontrib>Davanger, Svend</creatorcontrib><title>Omega‐3 fatty acids regulate plasticity in distinct hippocampal glutamatergic synapses</title><title>The European journal of neuroscience</title><addtitle>Eur J Neurosci</addtitle><description>Dietary omega‐3 fatty acids accumulate and are actively retained in central nervous system membranes, mainly in synapses, dendrites and photoreceptors. Despite this selective enrichment, their impact on synaptic function and plasticity has not been fully determined at the molecular level. In this study, we explored the impact of omega‐3 fatty acid deficiency on synaptic function in the hippocampus. Dietary omega‐3 fatty acid deficiency for 5 months after weaning led to a 65% reduction in the concentration of docosahexaenoic acid in whole brain synaptosomal phospholipids with no impact on global dopaminergic or serotonergic turnover. We observed reduced concentrations of glutamate receptor subunits, including GluA1, GluA2 and NR2B, and synaptic vesicle proteins synaptophysin and synaptotagmin 1 in hippocampal synaptosomes of omega‐3 fatty acid‐deficient mice as compared to the omega‐3 fatty acid rich group. In contrast, an increased concentration of neuronal inositol 1,4,5‐trisphosphate‐receptor (IP3‐R) was observed in the deficient group. Furthermore, omega‐3 fatty acid deficiency reduced the long‐term potentiation (LTP) in stratum oriens of the hippocampal CA1 area, but not in stratum radiatum. Thus, omega‐3 fatty acids seem to have specific effects in distinct subsets of glutamatergic synapses, suggesting specific molecular interactions in addition to altering plasma membrane properties on a more global scale. Dietary omega‐3 fatty acids are concentrated in neuronal synapses and dendrites. Their impact on synaptic function has not been determined at the molecular level. We found reduced concentrations of glutamate receptor subunits (GluA1, GluA2, NR2B) in hippocampal synaptosomes in omega‐3 fatty acid‐deficient mice. Long‐term potentiation was reduced in the stratum oriens of the CA1 area. Thus, omega‐3 fatty acids seem to have specific molecular interactions with synaptic glutamate receptors.</description><subject>Animals</subject><subject>Central nervous system</subject><subject>Dendrites</subject><subject>Docosahexaenoic acid</subject><subject>Dopamine - metabolism</subject><subject>Dopamine receptors</subject><subject>Excitatory Postsynaptic Potentials</subject><subject>Fatty acids</subject><subject>Fatty Acids, Omega-3 - administration &amp; dosage</subject><subject>Female</subject><subject>Glutamate receptors</subject><subject>Glutamatergic transmission</subject><subject>Hippocampal plasticity</subject><subject>Hippocampus</subject><subject>Hippocampus - drug effects</subject><subject>Hippocampus - metabolism</subject><subject>Hippocampus - physiology</subject><subject>Inositol 1,4,5-trisphosphate receptors</subject><subject>IP3‐R</subject><subject>Long-term potentiation</subject><subject>Long-Term Potentiation - drug effects</subject><subject>LTP</subject><subject>Male</subject><subject>Mice, Inbred C57BL</subject><subject>omega‐3 fatty acids</subject><subject>Phospholipids</subject><subject>Photoreceptors</subject><subject>Receptors, Glutamate - physiology</subject><subject>Serotonin - metabolism</subject><subject>Stratum radiatum</subject><subject>Synapses</subject><subject>Synapses - drug effects</subject><subject>Synapses - physiology</subject><subject>Synaptic plasticity</subject><subject>Synaptophysin</subject><subject>Synaptosomes</subject><subject>Synaptosomes - metabolism</subject><subject>Synaptotagmin</subject><subject>Weaning</subject><issn>0953-816X</issn><issn>1460-9568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10LtOwzAUBmALgWgpDLwAisQCQ1pfYiceUVVuqugCUrfIcU6Kq9yIE6FsPALPyJNgSGFA4iy25U-_jn6ETgmeEjcz2JZTElAa7KExCQT2JRfRPhpjyZkfEbEeoSNrtxjjSAT8EI0YZiLkjI3RelXARn28vTMvU23be0qb1HoNbLpcteDVubKt0cb9mNJLjXuUuvWeTV1XWhW1yr1N3rWqcLjZGO3ZvlS1BXuMDjKVWzjZnRP0dL14nN_6y9XN3fxq6WvGWeBrCSLJgAZcJsBoQlWYglQpByICqkMuKeOYJ4QzdxOhYIJoFaWgQwmpZGyCLobcuqleOrBtXBirIc9VCVVnY0qokES4cfT8D91WXVO67ZwKXTcRw9Spy0HpprK2gSyuG1Oopo8Jjr_qjl3d8Xfdzp7tErukgPRX_vTrwGwAryaH_v-keHH_MER-Agw9iig</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Aryal, Sanjay</creator><creator>Hussain, Suleman</creator><creator>Drevon, Christian A.</creator><creator>Nagelhus, Erlend</creator><creator>Hvalby, Øyvind</creator><creator>Jensen, Vidar</creator><creator>Walaas, Sven Ivar</creator><creator>Davanger, Svend</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1489-037X</orcidid></search><sort><creationdate>201901</creationdate><title>Omega‐3 fatty acids regulate plasticity in distinct hippocampal glutamatergic synapses</title><author>Aryal, Sanjay ; Hussain, Suleman ; Drevon, Christian A. ; Nagelhus, Erlend ; Hvalby, Øyvind ; Jensen, Vidar ; Walaas, Sven Ivar ; Davanger, Svend</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3534-c9e6bfe2459be32b2a7de9ad5e1642c75923505b153923676361ca8dec79ed933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Central nervous system</topic><topic>Dendrites</topic><topic>Docosahexaenoic acid</topic><topic>Dopamine - metabolism</topic><topic>Dopamine receptors</topic><topic>Excitatory Postsynaptic Potentials</topic><topic>Fatty acids</topic><topic>Fatty Acids, Omega-3 - administration &amp; dosage</topic><topic>Female</topic><topic>Glutamate receptors</topic><topic>Glutamatergic transmission</topic><topic>Hippocampal plasticity</topic><topic>Hippocampus</topic><topic>Hippocampus - drug effects</topic><topic>Hippocampus - metabolism</topic><topic>Hippocampus - physiology</topic><topic>Inositol 1,4,5-trisphosphate receptors</topic><topic>IP3‐R</topic><topic>Long-term potentiation</topic><topic>Long-Term Potentiation - drug effects</topic><topic>LTP</topic><topic>Male</topic><topic>Mice, Inbred C57BL</topic><topic>omega‐3 fatty acids</topic><topic>Phospholipids</topic><topic>Photoreceptors</topic><topic>Receptors, Glutamate - physiology</topic><topic>Serotonin - metabolism</topic><topic>Stratum radiatum</topic><topic>Synapses</topic><topic>Synapses - drug effects</topic><topic>Synapses - physiology</topic><topic>Synaptic plasticity</topic><topic>Synaptophysin</topic><topic>Synaptosomes</topic><topic>Synaptosomes - metabolism</topic><topic>Synaptotagmin</topic><topic>Weaning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aryal, Sanjay</creatorcontrib><creatorcontrib>Hussain, Suleman</creatorcontrib><creatorcontrib>Drevon, Christian A.</creatorcontrib><creatorcontrib>Nagelhus, Erlend</creatorcontrib><creatorcontrib>Hvalby, Øyvind</creatorcontrib><creatorcontrib>Jensen, Vidar</creatorcontrib><creatorcontrib>Walaas, Sven Ivar</creatorcontrib><creatorcontrib>Davanger, Svend</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The European journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aryal, Sanjay</au><au>Hussain, Suleman</au><au>Drevon, Christian A.</au><au>Nagelhus, Erlend</au><au>Hvalby, Øyvind</au><au>Jensen, Vidar</au><au>Walaas, Sven Ivar</au><au>Davanger, Svend</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Omega‐3 fatty acids regulate plasticity in distinct hippocampal glutamatergic synapses</atitle><jtitle>The European journal of neuroscience</jtitle><addtitle>Eur J Neurosci</addtitle><date>2019-01</date><risdate>2019</risdate><volume>49</volume><issue>1</issue><spage>40</spage><epage>50</epage><pages>40-50</pages><issn>0953-816X</issn><eissn>1460-9568</eissn><abstract>Dietary omega‐3 fatty acids accumulate and are actively retained in central nervous system membranes, mainly in synapses, dendrites and photoreceptors. Despite this selective enrichment, their impact on synaptic function and plasticity has not been fully determined at the molecular level. In this study, we explored the impact of omega‐3 fatty acid deficiency on synaptic function in the hippocampus. Dietary omega‐3 fatty acid deficiency for 5 months after weaning led to a 65% reduction in the concentration of docosahexaenoic acid in whole brain synaptosomal phospholipids with no impact on global dopaminergic or serotonergic turnover. We observed reduced concentrations of glutamate receptor subunits, including GluA1, GluA2 and NR2B, and synaptic vesicle proteins synaptophysin and synaptotagmin 1 in hippocampal synaptosomes of omega‐3 fatty acid‐deficient mice as compared to the omega‐3 fatty acid rich group. In contrast, an increased concentration of neuronal inositol 1,4,5‐trisphosphate‐receptor (IP3‐R) was observed in the deficient group. Furthermore, omega‐3 fatty acid deficiency reduced the long‐term potentiation (LTP) in stratum oriens of the hippocampal CA1 area, but not in stratum radiatum. Thus, omega‐3 fatty acids seem to have specific effects in distinct subsets of glutamatergic synapses, suggesting specific molecular interactions in addition to altering plasma membrane properties on a more global scale. Dietary omega‐3 fatty acids are concentrated in neuronal synapses and dendrites. Their impact on synaptic function has not been determined at the molecular level. We found reduced concentrations of glutamate receptor subunits (GluA1, GluA2, NR2B) in hippocampal synaptosomes in omega‐3 fatty acid‐deficient mice. Long‐term potentiation was reduced in the stratum oriens of the CA1 area. Thus, omega‐3 fatty acids seem to have specific molecular interactions with synaptic glutamate receptors.</abstract><cop>France</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30367533</pmid><doi>10.1111/ejn.14224</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1489-037X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0953-816X
ispartof The European journal of neuroscience, 2019-01, Vol.49 (1), p.40-50
issn 0953-816X
1460-9568
language eng
recordid cdi_proquest_miscellaneous_2126916666
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Central nervous system
Dendrites
Docosahexaenoic acid
Dopamine - metabolism
Dopamine receptors
Excitatory Postsynaptic Potentials
Fatty acids
Fatty Acids, Omega-3 - administration & dosage
Female
Glutamate receptors
Glutamatergic transmission
Hippocampal plasticity
Hippocampus
Hippocampus - drug effects
Hippocampus - metabolism
Hippocampus - physiology
Inositol 1,4,5-trisphosphate receptors
IP3‐R
Long-term potentiation
Long-Term Potentiation - drug effects
LTP
Male
Mice, Inbred C57BL
omega‐3 fatty acids
Phospholipids
Photoreceptors
Receptors, Glutamate - physiology
Serotonin - metabolism
Stratum radiatum
Synapses
Synapses - drug effects
Synapses - physiology
Synaptic plasticity
Synaptophysin
Synaptosomes
Synaptosomes - metabolism
Synaptotagmin
Weaning
title Omega‐3 fatty acids regulate plasticity in distinct hippocampal glutamatergic synapses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A04%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Omega%E2%80%903%20fatty%20acids%20regulate%20plasticity%20in%20distinct%20hippocampal%20glutamatergic%20synapses&rft.jtitle=The%20European%20journal%20of%20neuroscience&rft.au=Aryal,%20Sanjay&rft.date=2019-01&rft.volume=49&rft.issue=1&rft.spage=40&rft.epage=50&rft.pages=40-50&rft.issn=0953-816X&rft.eissn=1460-9568&rft_id=info:doi/10.1111/ejn.14224&rft_dat=%3Cproquest_cross%3E2170868302%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2170868302&rft_id=info:pmid/30367533&rfr_iscdi=true