Omega‐3 fatty acids regulate plasticity in distinct hippocampal glutamatergic synapses
Dietary omega‐3 fatty acids accumulate and are actively retained in central nervous system membranes, mainly in synapses, dendrites and photoreceptors. Despite this selective enrichment, their impact on synaptic function and plasticity has not been fully determined at the molecular level. In this st...
Gespeichert in:
Veröffentlicht in: | The European journal of neuroscience 2019-01, Vol.49 (1), p.40-50 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 50 |
---|---|
container_issue | 1 |
container_start_page | 40 |
container_title | The European journal of neuroscience |
container_volume | 49 |
creator | Aryal, Sanjay Hussain, Suleman Drevon, Christian A. Nagelhus, Erlend Hvalby, Øyvind Jensen, Vidar Walaas, Sven Ivar Davanger, Svend |
description | Dietary omega‐3 fatty acids accumulate and are actively retained in central nervous system membranes, mainly in synapses, dendrites and photoreceptors. Despite this selective enrichment, their impact on synaptic function and plasticity has not been fully determined at the molecular level. In this study, we explored the impact of omega‐3 fatty acid deficiency on synaptic function in the hippocampus. Dietary omega‐3 fatty acid deficiency for 5 months after weaning led to a 65% reduction in the concentration of docosahexaenoic acid in whole brain synaptosomal phospholipids with no impact on global dopaminergic or serotonergic turnover. We observed reduced concentrations of glutamate receptor subunits, including GluA1, GluA2 and NR2B, and synaptic vesicle proteins synaptophysin and synaptotagmin 1 in hippocampal synaptosomes of omega‐3 fatty acid‐deficient mice as compared to the omega‐3 fatty acid rich group. In contrast, an increased concentration of neuronal inositol 1,4,5‐trisphosphate‐receptor (IP3‐R) was observed in the deficient group. Furthermore, omega‐3 fatty acid deficiency reduced the long‐term potentiation (LTP) in stratum oriens of the hippocampal CA1 area, but not in stratum radiatum. Thus, omega‐3 fatty acids seem to have specific effects in distinct subsets of glutamatergic synapses, suggesting specific molecular interactions in addition to altering plasma membrane properties on a more global scale.
Dietary omega‐3 fatty acids are concentrated in neuronal synapses and dendrites. Their impact on synaptic function has not been determined at the molecular level. We found reduced concentrations of glutamate receptor subunits (GluA1, GluA2, NR2B) in hippocampal synaptosomes in omega‐3 fatty acid‐deficient mice. Long‐term potentiation was reduced in the stratum oriens of the CA1 area. Thus, omega‐3 fatty acids seem to have specific molecular interactions with synaptic glutamate receptors. |
doi_str_mv | 10.1111/ejn.14224 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2126916666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2170868302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3534-c9e6bfe2459be32b2a7de9ad5e1642c75923505b153923676361ca8dec79ed933</originalsourceid><addsrcrecordid>eNp10LtOwzAUBmALgWgpDLwAisQCQ1pfYiceUVVuqugCUrfIcU6Kq9yIE6FsPALPyJNgSGFA4iy25U-_jn6ETgmeEjcz2JZTElAa7KExCQT2JRfRPhpjyZkfEbEeoSNrtxjjSAT8EI0YZiLkjI3RelXARn28vTMvU23be0qb1HoNbLpcteDVubKt0cb9mNJLjXuUuvWeTV1XWhW1yr1N3rWqcLjZGO3ZvlS1BXuMDjKVWzjZnRP0dL14nN_6y9XN3fxq6WvGWeBrCSLJgAZcJsBoQlWYglQpByICqkMuKeOYJ4QzdxOhYIJoFaWgQwmpZGyCLobcuqleOrBtXBirIc9VCVVnY0qokES4cfT8D91WXVO67ZwKXTcRw9Spy0HpprK2gSyuG1Oopo8Jjr_qjl3d8Xfdzp7tErukgPRX_vTrwGwAryaH_v-keHH_MER-Agw9iig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2170868302</pqid></control><display><type>article</type><title>Omega‐3 fatty acids regulate plasticity in distinct hippocampal glutamatergic synapses</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Aryal, Sanjay ; Hussain, Suleman ; Drevon, Christian A. ; Nagelhus, Erlend ; Hvalby, Øyvind ; Jensen, Vidar ; Walaas, Sven Ivar ; Davanger, Svend</creator><creatorcontrib>Aryal, Sanjay ; Hussain, Suleman ; Drevon, Christian A. ; Nagelhus, Erlend ; Hvalby, Øyvind ; Jensen, Vidar ; Walaas, Sven Ivar ; Davanger, Svend</creatorcontrib><description>Dietary omega‐3 fatty acids accumulate and are actively retained in central nervous system membranes, mainly in synapses, dendrites and photoreceptors. Despite this selective enrichment, their impact on synaptic function and plasticity has not been fully determined at the molecular level. In this study, we explored the impact of omega‐3 fatty acid deficiency on synaptic function in the hippocampus. Dietary omega‐3 fatty acid deficiency for 5 months after weaning led to a 65% reduction in the concentration of docosahexaenoic acid in whole brain synaptosomal phospholipids with no impact on global dopaminergic or serotonergic turnover. We observed reduced concentrations of glutamate receptor subunits, including GluA1, GluA2 and NR2B, and synaptic vesicle proteins synaptophysin and synaptotagmin 1 in hippocampal synaptosomes of omega‐3 fatty acid‐deficient mice as compared to the omega‐3 fatty acid rich group. In contrast, an increased concentration of neuronal inositol 1,4,5‐trisphosphate‐receptor (IP3‐R) was observed in the deficient group. Furthermore, omega‐3 fatty acid deficiency reduced the long‐term potentiation (LTP) in stratum oriens of the hippocampal CA1 area, but not in stratum radiatum. Thus, omega‐3 fatty acids seem to have specific effects in distinct subsets of glutamatergic synapses, suggesting specific molecular interactions in addition to altering plasma membrane properties on a more global scale.
Dietary omega‐3 fatty acids are concentrated in neuronal synapses and dendrites. Their impact on synaptic function has not been determined at the molecular level. We found reduced concentrations of glutamate receptor subunits (GluA1, GluA2, NR2B) in hippocampal synaptosomes in omega‐3 fatty acid‐deficient mice. Long‐term potentiation was reduced in the stratum oriens of the CA1 area. Thus, omega‐3 fatty acids seem to have specific molecular interactions with synaptic glutamate receptors.</description><identifier>ISSN: 0953-816X</identifier><identifier>EISSN: 1460-9568</identifier><identifier>DOI: 10.1111/ejn.14224</identifier><identifier>PMID: 30367533</identifier><language>eng</language><publisher>France: Wiley Subscription Services, Inc</publisher><subject>Animals ; Central nervous system ; Dendrites ; Docosahexaenoic acid ; Dopamine - metabolism ; Dopamine receptors ; Excitatory Postsynaptic Potentials ; Fatty acids ; Fatty Acids, Omega-3 - administration & dosage ; Female ; Glutamate receptors ; Glutamatergic transmission ; Hippocampal plasticity ; Hippocampus ; Hippocampus - drug effects ; Hippocampus - metabolism ; Hippocampus - physiology ; Inositol 1,4,5-trisphosphate receptors ; IP3‐R ; Long-term potentiation ; Long-Term Potentiation - drug effects ; LTP ; Male ; Mice, Inbred C57BL ; omega‐3 fatty acids ; Phospholipids ; Photoreceptors ; Receptors, Glutamate - physiology ; Serotonin - metabolism ; Stratum radiatum ; Synapses ; Synapses - drug effects ; Synapses - physiology ; Synaptic plasticity ; Synaptophysin ; Synaptosomes ; Synaptosomes - metabolism ; Synaptotagmin ; Weaning</subject><ispartof>The European journal of neuroscience, 2019-01, Vol.49 (1), p.40-50</ispartof><rights>2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd</rights><rights>2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.</rights><rights>Copyright © 2019 Federation of European Neuroscience Societies and John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3534-c9e6bfe2459be32b2a7de9ad5e1642c75923505b153923676361ca8dec79ed933</citedby><cites>FETCH-LOGICAL-c3534-c9e6bfe2459be32b2a7de9ad5e1642c75923505b153923676361ca8dec79ed933</cites><orcidid>0000-0002-1489-037X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fejn.14224$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fejn.14224$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30367533$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aryal, Sanjay</creatorcontrib><creatorcontrib>Hussain, Suleman</creatorcontrib><creatorcontrib>Drevon, Christian A.</creatorcontrib><creatorcontrib>Nagelhus, Erlend</creatorcontrib><creatorcontrib>Hvalby, Øyvind</creatorcontrib><creatorcontrib>Jensen, Vidar</creatorcontrib><creatorcontrib>Walaas, Sven Ivar</creatorcontrib><creatorcontrib>Davanger, Svend</creatorcontrib><title>Omega‐3 fatty acids regulate plasticity in distinct hippocampal glutamatergic synapses</title><title>The European journal of neuroscience</title><addtitle>Eur J Neurosci</addtitle><description>Dietary omega‐3 fatty acids accumulate and are actively retained in central nervous system membranes, mainly in synapses, dendrites and photoreceptors. Despite this selective enrichment, their impact on synaptic function and plasticity has not been fully determined at the molecular level. In this study, we explored the impact of omega‐3 fatty acid deficiency on synaptic function in the hippocampus. Dietary omega‐3 fatty acid deficiency for 5 months after weaning led to a 65% reduction in the concentration of docosahexaenoic acid in whole brain synaptosomal phospholipids with no impact on global dopaminergic or serotonergic turnover. We observed reduced concentrations of glutamate receptor subunits, including GluA1, GluA2 and NR2B, and synaptic vesicle proteins synaptophysin and synaptotagmin 1 in hippocampal synaptosomes of omega‐3 fatty acid‐deficient mice as compared to the omega‐3 fatty acid rich group. In contrast, an increased concentration of neuronal inositol 1,4,5‐trisphosphate‐receptor (IP3‐R) was observed in the deficient group. Furthermore, omega‐3 fatty acid deficiency reduced the long‐term potentiation (LTP) in stratum oriens of the hippocampal CA1 area, but not in stratum radiatum. Thus, omega‐3 fatty acids seem to have specific effects in distinct subsets of glutamatergic synapses, suggesting specific molecular interactions in addition to altering plasma membrane properties on a more global scale.
Dietary omega‐3 fatty acids are concentrated in neuronal synapses and dendrites. Their impact on synaptic function has not been determined at the molecular level. We found reduced concentrations of glutamate receptor subunits (GluA1, GluA2, NR2B) in hippocampal synaptosomes in omega‐3 fatty acid‐deficient mice. Long‐term potentiation was reduced in the stratum oriens of the CA1 area. Thus, omega‐3 fatty acids seem to have specific molecular interactions with synaptic glutamate receptors.</description><subject>Animals</subject><subject>Central nervous system</subject><subject>Dendrites</subject><subject>Docosahexaenoic acid</subject><subject>Dopamine - metabolism</subject><subject>Dopamine receptors</subject><subject>Excitatory Postsynaptic Potentials</subject><subject>Fatty acids</subject><subject>Fatty Acids, Omega-3 - administration & dosage</subject><subject>Female</subject><subject>Glutamate receptors</subject><subject>Glutamatergic transmission</subject><subject>Hippocampal plasticity</subject><subject>Hippocampus</subject><subject>Hippocampus - drug effects</subject><subject>Hippocampus - metabolism</subject><subject>Hippocampus - physiology</subject><subject>Inositol 1,4,5-trisphosphate receptors</subject><subject>IP3‐R</subject><subject>Long-term potentiation</subject><subject>Long-Term Potentiation - drug effects</subject><subject>LTP</subject><subject>Male</subject><subject>Mice, Inbred C57BL</subject><subject>omega‐3 fatty acids</subject><subject>Phospholipids</subject><subject>Photoreceptors</subject><subject>Receptors, Glutamate - physiology</subject><subject>Serotonin - metabolism</subject><subject>Stratum radiatum</subject><subject>Synapses</subject><subject>Synapses - drug effects</subject><subject>Synapses - physiology</subject><subject>Synaptic plasticity</subject><subject>Synaptophysin</subject><subject>Synaptosomes</subject><subject>Synaptosomes - metabolism</subject><subject>Synaptotagmin</subject><subject>Weaning</subject><issn>0953-816X</issn><issn>1460-9568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10LtOwzAUBmALgWgpDLwAisQCQ1pfYiceUVVuqugCUrfIcU6Kq9yIE6FsPALPyJNgSGFA4iy25U-_jn6ETgmeEjcz2JZTElAa7KExCQT2JRfRPhpjyZkfEbEeoSNrtxjjSAT8EI0YZiLkjI3RelXARn28vTMvU23be0qb1HoNbLpcteDVubKt0cb9mNJLjXuUuvWeTV1XWhW1yr1N3rWqcLjZGO3ZvlS1BXuMDjKVWzjZnRP0dL14nN_6y9XN3fxq6WvGWeBrCSLJgAZcJsBoQlWYglQpByICqkMuKeOYJ4QzdxOhYIJoFaWgQwmpZGyCLobcuqleOrBtXBirIc9VCVVnY0qokES4cfT8D91WXVO67ZwKXTcRw9Spy0HpprK2gSyuG1Oopo8Jjr_qjl3d8Xfdzp7tErukgPRX_vTrwGwAryaH_v-keHH_MER-Agw9iig</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Aryal, Sanjay</creator><creator>Hussain, Suleman</creator><creator>Drevon, Christian A.</creator><creator>Nagelhus, Erlend</creator><creator>Hvalby, Øyvind</creator><creator>Jensen, Vidar</creator><creator>Walaas, Sven Ivar</creator><creator>Davanger, Svend</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1489-037X</orcidid></search><sort><creationdate>201901</creationdate><title>Omega‐3 fatty acids regulate plasticity in distinct hippocampal glutamatergic synapses</title><author>Aryal, Sanjay ; Hussain, Suleman ; Drevon, Christian A. ; Nagelhus, Erlend ; Hvalby, Øyvind ; Jensen, Vidar ; Walaas, Sven Ivar ; Davanger, Svend</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3534-c9e6bfe2459be32b2a7de9ad5e1642c75923505b153923676361ca8dec79ed933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Central nervous system</topic><topic>Dendrites</topic><topic>Docosahexaenoic acid</topic><topic>Dopamine - metabolism</topic><topic>Dopamine receptors</topic><topic>Excitatory Postsynaptic Potentials</topic><topic>Fatty acids</topic><topic>Fatty Acids, Omega-3 - administration & dosage</topic><topic>Female</topic><topic>Glutamate receptors</topic><topic>Glutamatergic transmission</topic><topic>Hippocampal plasticity</topic><topic>Hippocampus</topic><topic>Hippocampus - drug effects</topic><topic>Hippocampus - metabolism</topic><topic>Hippocampus - physiology</topic><topic>Inositol 1,4,5-trisphosphate receptors</topic><topic>IP3‐R</topic><topic>Long-term potentiation</topic><topic>Long-Term Potentiation - drug effects</topic><topic>LTP</topic><topic>Male</topic><topic>Mice, Inbred C57BL</topic><topic>omega‐3 fatty acids</topic><topic>Phospholipids</topic><topic>Photoreceptors</topic><topic>Receptors, Glutamate - physiology</topic><topic>Serotonin - metabolism</topic><topic>Stratum radiatum</topic><topic>Synapses</topic><topic>Synapses - drug effects</topic><topic>Synapses - physiology</topic><topic>Synaptic plasticity</topic><topic>Synaptophysin</topic><topic>Synaptosomes</topic><topic>Synaptosomes - metabolism</topic><topic>Synaptotagmin</topic><topic>Weaning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aryal, Sanjay</creatorcontrib><creatorcontrib>Hussain, Suleman</creatorcontrib><creatorcontrib>Drevon, Christian A.</creatorcontrib><creatorcontrib>Nagelhus, Erlend</creatorcontrib><creatorcontrib>Hvalby, Øyvind</creatorcontrib><creatorcontrib>Jensen, Vidar</creatorcontrib><creatorcontrib>Walaas, Sven Ivar</creatorcontrib><creatorcontrib>Davanger, Svend</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The European journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aryal, Sanjay</au><au>Hussain, Suleman</au><au>Drevon, Christian A.</au><au>Nagelhus, Erlend</au><au>Hvalby, Øyvind</au><au>Jensen, Vidar</au><au>Walaas, Sven Ivar</au><au>Davanger, Svend</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Omega‐3 fatty acids regulate plasticity in distinct hippocampal glutamatergic synapses</atitle><jtitle>The European journal of neuroscience</jtitle><addtitle>Eur J Neurosci</addtitle><date>2019-01</date><risdate>2019</risdate><volume>49</volume><issue>1</issue><spage>40</spage><epage>50</epage><pages>40-50</pages><issn>0953-816X</issn><eissn>1460-9568</eissn><abstract>Dietary omega‐3 fatty acids accumulate and are actively retained in central nervous system membranes, mainly in synapses, dendrites and photoreceptors. Despite this selective enrichment, their impact on synaptic function and plasticity has not been fully determined at the molecular level. In this study, we explored the impact of omega‐3 fatty acid deficiency on synaptic function in the hippocampus. Dietary omega‐3 fatty acid deficiency for 5 months after weaning led to a 65% reduction in the concentration of docosahexaenoic acid in whole brain synaptosomal phospholipids with no impact on global dopaminergic or serotonergic turnover. We observed reduced concentrations of glutamate receptor subunits, including GluA1, GluA2 and NR2B, and synaptic vesicle proteins synaptophysin and synaptotagmin 1 in hippocampal synaptosomes of omega‐3 fatty acid‐deficient mice as compared to the omega‐3 fatty acid rich group. In contrast, an increased concentration of neuronal inositol 1,4,5‐trisphosphate‐receptor (IP3‐R) was observed in the deficient group. Furthermore, omega‐3 fatty acid deficiency reduced the long‐term potentiation (LTP) in stratum oriens of the hippocampal CA1 area, but not in stratum radiatum. Thus, omega‐3 fatty acids seem to have specific effects in distinct subsets of glutamatergic synapses, suggesting specific molecular interactions in addition to altering plasma membrane properties on a more global scale.
Dietary omega‐3 fatty acids are concentrated in neuronal synapses and dendrites. Their impact on synaptic function has not been determined at the molecular level. We found reduced concentrations of glutamate receptor subunits (GluA1, GluA2, NR2B) in hippocampal synaptosomes in omega‐3 fatty acid‐deficient mice. Long‐term potentiation was reduced in the stratum oriens of the CA1 area. Thus, omega‐3 fatty acids seem to have specific molecular interactions with synaptic glutamate receptors.</abstract><cop>France</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30367533</pmid><doi>10.1111/ejn.14224</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1489-037X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-816X |
ispartof | The European journal of neuroscience, 2019-01, Vol.49 (1), p.40-50 |
issn | 0953-816X 1460-9568 |
language | eng |
recordid | cdi_proquest_miscellaneous_2126916666 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals Central nervous system Dendrites Docosahexaenoic acid Dopamine - metabolism Dopamine receptors Excitatory Postsynaptic Potentials Fatty acids Fatty Acids, Omega-3 - administration & dosage Female Glutamate receptors Glutamatergic transmission Hippocampal plasticity Hippocampus Hippocampus - drug effects Hippocampus - metabolism Hippocampus - physiology Inositol 1,4,5-trisphosphate receptors IP3‐R Long-term potentiation Long-Term Potentiation - drug effects LTP Male Mice, Inbred C57BL omega‐3 fatty acids Phospholipids Photoreceptors Receptors, Glutamate - physiology Serotonin - metabolism Stratum radiatum Synapses Synapses - drug effects Synapses - physiology Synaptic plasticity Synaptophysin Synaptosomes Synaptosomes - metabolism Synaptotagmin Weaning |
title | Omega‐3 fatty acids regulate plasticity in distinct hippocampal glutamatergic synapses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A04%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Omega%E2%80%903%20fatty%20acids%20regulate%20plasticity%20in%20distinct%20hippocampal%20glutamatergic%20synapses&rft.jtitle=The%20European%20journal%20of%20neuroscience&rft.au=Aryal,%20Sanjay&rft.date=2019-01&rft.volume=49&rft.issue=1&rft.spage=40&rft.epage=50&rft.pages=40-50&rft.issn=0953-816X&rft.eissn=1460-9568&rft_id=info:doi/10.1111/ejn.14224&rft_dat=%3Cproquest_cross%3E2170868302%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2170868302&rft_id=info:pmid/30367533&rfr_iscdi=true |