Multiview Consensus Graph Clustering
A graph is usually formed to reveal the relationship between data points and graph structure is encoded by the affinity matrix. Most graph-based multiview clustering methods use predefined affinity matrices and the clustering performance highly depends on the quality of graph. We learn a consensus g...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2019-03, Vol.28 (3), p.1261-1270 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1270 |
---|---|
container_issue | 3 |
container_start_page | 1261 |
container_title | IEEE transactions on image processing |
container_volume | 28 |
creator | Zhan, Kun Nie, Feiping Wang, Jing Yang, Yi |
description | A graph is usually formed to reveal the relationship between data points and graph structure is encoded by the affinity matrix. Most graph-based multiview clustering methods use predefined affinity matrices and the clustering performance highly depends on the quality of graph. We learn a consensus graph with minimizing disagreement between different views and constraining the rank of the Laplacian matrix. Since diverse views admit the same underlying cluster structure across multiple views, we use a new disagreement cost function for regularizing graphs from different views toward a common consensus. Simultaneously, we impose a rank constraint on the Laplacian matrix to learn the consensus graph with exactly k connected components where k is the number of clusters, which is different from using fixed affinity matrices in most existing graph-based methods. With the learned consensus graph, we can directly obtain the cluster labels without performing any post-processing, such as kmeans clustering algorithm in spectral clustering-based methods. A multiview consensus clustering method is proposed to learn such a graph. An efficient iterative updating algorithm is derived to optimize the proposed challenging optimization problem. Experiments on several benchmark datasets have demonstrated the effectiveness of the proposed method in terms of seven metrics. |
doi_str_mv | 10.1109/TIP.2018.2877335 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2126916126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8501973</ieee_id><sourcerecordid>2126916126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-68f1fdedfb813307c5d0837d71a41ff816672fa82a72c759dab1f550e54b11963</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRrFbvgiAFPXhJndnvHCVoLVT0UM9hm-xqSprU3UTx37ultQcvMwPzzMvwEHKBMEaE9G4-fR1TQD2mWinGxAE5wZRjAsDpYZxBqEQhTwfkNIQlAHKB8pgMGDAuqWYn5Oa5r7vqq7Lfo6xtgm1CH0YTb9Yfo6zuQ2d91byfkSNn6mDPd31I3h4f5tlTMnuZTLP7WVIwrrpEaoeutKVbaGQMVCFK0EyVCg1H5zRKqagzmhpFCyXS0izQCQFW8AViKtmQ3G5z17797G3o8lUVClvXprFtH3KKVKYoY43o9T902fa-id9FilHgSmoaKdhShW9D8Nbla1-tjP_JEfKNwTwazDcG853BeHK1C-4XK1vuD_6UReByC1TW2v1aC8A0BvwCn1Fx2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132047682</pqid></control><display><type>article</type><title>Multiview Consensus Graph Clustering</title><source>IEEE Electronic Library (IEL)</source><creator>Zhan, Kun ; Nie, Feiping ; Wang, Jing ; Yang, Yi</creator><creatorcontrib>Zhan, Kun ; Nie, Feiping ; Wang, Jing ; Yang, Yi</creatorcontrib><description>A graph is usually formed to reveal the relationship between data points and graph structure is encoded by the affinity matrix. Most graph-based multiview clustering methods use predefined affinity matrices and the clustering performance highly depends on the quality of graph. We learn a consensus graph with minimizing disagreement between different views and constraining the rank of the Laplacian matrix. Since diverse views admit the same underlying cluster structure across multiple views, we use a new disagreement cost function for regularizing graphs from different views toward a common consensus. Simultaneously, we impose a rank constraint on the Laplacian matrix to learn the consensus graph with exactly k connected components where k is the number of clusters, which is different from using fixed affinity matrices in most existing graph-based methods. With the learned consensus graph, we can directly obtain the cluster labels without performing any post-processing, such as kmeans clustering algorithm in spectral clustering-based methods. A multiview consensus clustering method is proposed to learn such a graph. An efficient iterative updating algorithm is derived to optimize the proposed challenging optimization problem. Experiments on several benchmark datasets have demonstrated the effectiveness of the proposed method in terms of seven metrics.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2018.2877335</identifier><identifier>PMID: 30346283</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Affinity ; Algorithms ; Clustering ; Clustering algorithms ; Coding ; Data points ; Eigenvalues and eigenfunctions ; graph learning ; image retrieval ; Iterative methods ; Kernel ; Laplace equations ; Learning systems ; Linear programming ; multiview clustering ; Periodic structures ; Post-processing ; Unsupervised learning</subject><ispartof>IEEE transactions on image processing, 2019-03, Vol.28 (3), p.1261-1270</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-68f1fdedfb813307c5d0837d71a41ff816672fa82a72c759dab1f550e54b11963</citedby><cites>FETCH-LOGICAL-c347t-68f1fdedfb813307c5d0837d71a41ff816672fa82a72c759dab1f550e54b11963</cites><orcidid>0000-0002-3375-6694 ; 0000-0002-0512-880X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8501973$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8501973$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30346283$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhan, Kun</creatorcontrib><creatorcontrib>Nie, Feiping</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Yang, Yi</creatorcontrib><title>Multiview Consensus Graph Clustering</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>A graph is usually formed to reveal the relationship between data points and graph structure is encoded by the affinity matrix. Most graph-based multiview clustering methods use predefined affinity matrices and the clustering performance highly depends on the quality of graph. We learn a consensus graph with minimizing disagreement between different views and constraining the rank of the Laplacian matrix. Since diverse views admit the same underlying cluster structure across multiple views, we use a new disagreement cost function for regularizing graphs from different views toward a common consensus. Simultaneously, we impose a rank constraint on the Laplacian matrix to learn the consensus graph with exactly k connected components where k is the number of clusters, which is different from using fixed affinity matrices in most existing graph-based methods. With the learned consensus graph, we can directly obtain the cluster labels without performing any post-processing, such as kmeans clustering algorithm in spectral clustering-based methods. A multiview consensus clustering method is proposed to learn such a graph. An efficient iterative updating algorithm is derived to optimize the proposed challenging optimization problem. Experiments on several benchmark datasets have demonstrated the effectiveness of the proposed method in terms of seven metrics.</description><subject>Affinity</subject><subject>Algorithms</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Coding</subject><subject>Data points</subject><subject>Eigenvalues and eigenfunctions</subject><subject>graph learning</subject><subject>image retrieval</subject><subject>Iterative methods</subject><subject>Kernel</subject><subject>Laplace equations</subject><subject>Learning systems</subject><subject>Linear programming</subject><subject>multiview clustering</subject><subject>Periodic structures</subject><subject>Post-processing</subject><subject>Unsupervised learning</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRrFbvgiAFPXhJndnvHCVoLVT0UM9hm-xqSprU3UTx37ultQcvMwPzzMvwEHKBMEaE9G4-fR1TQD2mWinGxAE5wZRjAsDpYZxBqEQhTwfkNIQlAHKB8pgMGDAuqWYn5Oa5r7vqq7Lfo6xtgm1CH0YTb9Yfo6zuQ2d91byfkSNn6mDPd31I3h4f5tlTMnuZTLP7WVIwrrpEaoeutKVbaGQMVCFK0EyVCg1H5zRKqagzmhpFCyXS0izQCQFW8AViKtmQ3G5z17797G3o8lUVClvXprFtH3KKVKYoY43o9T902fa-id9FilHgSmoaKdhShW9D8Nbla1-tjP_JEfKNwTwazDcG853BeHK1C-4XK1vuD_6UReByC1TW2v1aC8A0BvwCn1Fx2w</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Zhan, Kun</creator><creator>Nie, Feiping</creator><creator>Wang, Jing</creator><creator>Yang, Yi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3375-6694</orcidid><orcidid>https://orcid.org/0000-0002-0512-880X</orcidid></search><sort><creationdate>20190301</creationdate><title>Multiview Consensus Graph Clustering</title><author>Zhan, Kun ; Nie, Feiping ; Wang, Jing ; Yang, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-68f1fdedfb813307c5d0837d71a41ff816672fa82a72c759dab1f550e54b11963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Affinity</topic><topic>Algorithms</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Coding</topic><topic>Data points</topic><topic>Eigenvalues and eigenfunctions</topic><topic>graph learning</topic><topic>image retrieval</topic><topic>Iterative methods</topic><topic>Kernel</topic><topic>Laplace equations</topic><topic>Learning systems</topic><topic>Linear programming</topic><topic>multiview clustering</topic><topic>Periodic structures</topic><topic>Post-processing</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhan, Kun</creatorcontrib><creatorcontrib>Nie, Feiping</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Yang, Yi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhan, Kun</au><au>Nie, Feiping</au><au>Wang, Jing</au><au>Yang, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiview Consensus Graph Clustering</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>28</volume><issue>3</issue><spage>1261</spage><epage>1270</epage><pages>1261-1270</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>A graph is usually formed to reveal the relationship between data points and graph structure is encoded by the affinity matrix. Most graph-based multiview clustering methods use predefined affinity matrices and the clustering performance highly depends on the quality of graph. We learn a consensus graph with minimizing disagreement between different views and constraining the rank of the Laplacian matrix. Since diverse views admit the same underlying cluster structure across multiple views, we use a new disagreement cost function for regularizing graphs from different views toward a common consensus. Simultaneously, we impose a rank constraint on the Laplacian matrix to learn the consensus graph with exactly k connected components where k is the number of clusters, which is different from using fixed affinity matrices in most existing graph-based methods. With the learned consensus graph, we can directly obtain the cluster labels without performing any post-processing, such as kmeans clustering algorithm in spectral clustering-based methods. A multiview consensus clustering method is proposed to learn such a graph. An efficient iterative updating algorithm is derived to optimize the proposed challenging optimization problem. Experiments on several benchmark datasets have demonstrated the effectiveness of the proposed method in terms of seven metrics.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30346283</pmid><doi>10.1109/TIP.2018.2877335</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3375-6694</orcidid><orcidid>https://orcid.org/0000-0002-0512-880X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2019-03, Vol.28 (3), p.1261-1270 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_miscellaneous_2126916126 |
source | IEEE Electronic Library (IEL) |
subjects | Affinity Algorithms Clustering Clustering algorithms Coding Data points Eigenvalues and eigenfunctions graph learning image retrieval Iterative methods Kernel Laplace equations Learning systems Linear programming multiview clustering Periodic structures Post-processing Unsupervised learning |
title | Multiview Consensus Graph Clustering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A12%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiview%20Consensus%20Graph%20Clustering&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Zhan,%20Kun&rft.date=2019-03-01&rft.volume=28&rft.issue=3&rft.spage=1261&rft.epage=1270&rft.pages=1261-1270&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2018.2877335&rft_dat=%3Cproquest_RIE%3E2126916126%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132047682&rft_id=info:pmid/30346283&rft_ieee_id=8501973&rfr_iscdi=true |