Multiview Consensus Graph Clustering

A graph is usually formed to reveal the relationship between data points and graph structure is encoded by the affinity matrix. Most graph-based multiview clustering methods use predefined affinity matrices and the clustering performance highly depends on the quality of graph. We learn a consensus g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2019-03, Vol.28 (3), p.1261-1270
Hauptverfasser: Zhan, Kun, Nie, Feiping, Wang, Jing, Yang, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1270
container_issue 3
container_start_page 1261
container_title IEEE transactions on image processing
container_volume 28
creator Zhan, Kun
Nie, Feiping
Wang, Jing
Yang, Yi
description A graph is usually formed to reveal the relationship between data points and graph structure is encoded by the affinity matrix. Most graph-based multiview clustering methods use predefined affinity matrices and the clustering performance highly depends on the quality of graph. We learn a consensus graph with minimizing disagreement between different views and constraining the rank of the Laplacian matrix. Since diverse views admit the same underlying cluster structure across multiple views, we use a new disagreement cost function for regularizing graphs from different views toward a common consensus. Simultaneously, we impose a rank constraint on the Laplacian matrix to learn the consensus graph with exactly k connected components where k is the number of clusters, which is different from using fixed affinity matrices in most existing graph-based methods. With the learned consensus graph, we can directly obtain the cluster labels without performing any post-processing, such as kmeans clustering algorithm in spectral clustering-based methods. A multiview consensus clustering method is proposed to learn such a graph. An efficient iterative updating algorithm is derived to optimize the proposed challenging optimization problem. Experiments on several benchmark datasets have demonstrated the effectiveness of the proposed method in terms of seven metrics.
doi_str_mv 10.1109/TIP.2018.2877335
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2126916126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8501973</ieee_id><sourcerecordid>2126916126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-68f1fdedfb813307c5d0837d71a41ff816672fa82a72c759dab1f550e54b11963</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRrFbvgiAFPXhJndnvHCVoLVT0UM9hm-xqSprU3UTx37ultQcvMwPzzMvwEHKBMEaE9G4-fR1TQD2mWinGxAE5wZRjAsDpYZxBqEQhTwfkNIQlAHKB8pgMGDAuqWYn5Oa5r7vqq7Lfo6xtgm1CH0YTb9Yfo6zuQ2d91byfkSNn6mDPd31I3h4f5tlTMnuZTLP7WVIwrrpEaoeutKVbaGQMVCFK0EyVCg1H5zRKqagzmhpFCyXS0izQCQFW8AViKtmQ3G5z17797G3o8lUVClvXprFtH3KKVKYoY43o9T902fa-id9FilHgSmoaKdhShW9D8Nbla1-tjP_JEfKNwTwazDcG853BeHK1C-4XK1vuD_6UReByC1TW2v1aC8A0BvwCn1Fx2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132047682</pqid></control><display><type>article</type><title>Multiview Consensus Graph Clustering</title><source>IEEE Electronic Library (IEL)</source><creator>Zhan, Kun ; Nie, Feiping ; Wang, Jing ; Yang, Yi</creator><creatorcontrib>Zhan, Kun ; Nie, Feiping ; Wang, Jing ; Yang, Yi</creatorcontrib><description>A graph is usually formed to reveal the relationship between data points and graph structure is encoded by the affinity matrix. Most graph-based multiview clustering methods use predefined affinity matrices and the clustering performance highly depends on the quality of graph. We learn a consensus graph with minimizing disagreement between different views and constraining the rank of the Laplacian matrix. Since diverse views admit the same underlying cluster structure across multiple views, we use a new disagreement cost function for regularizing graphs from different views toward a common consensus. Simultaneously, we impose a rank constraint on the Laplacian matrix to learn the consensus graph with exactly k connected components where k is the number of clusters, which is different from using fixed affinity matrices in most existing graph-based methods. With the learned consensus graph, we can directly obtain the cluster labels without performing any post-processing, such as kmeans clustering algorithm in spectral clustering-based methods. A multiview consensus clustering method is proposed to learn such a graph. An efficient iterative updating algorithm is derived to optimize the proposed challenging optimization problem. Experiments on several benchmark datasets have demonstrated the effectiveness of the proposed method in terms of seven metrics.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2018.2877335</identifier><identifier>PMID: 30346283</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Affinity ; Algorithms ; Clustering ; Clustering algorithms ; Coding ; Data points ; Eigenvalues and eigenfunctions ; graph learning ; image retrieval ; Iterative methods ; Kernel ; Laplace equations ; Learning systems ; Linear programming ; multiview clustering ; Periodic structures ; Post-processing ; Unsupervised learning</subject><ispartof>IEEE transactions on image processing, 2019-03, Vol.28 (3), p.1261-1270</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-68f1fdedfb813307c5d0837d71a41ff816672fa82a72c759dab1f550e54b11963</citedby><cites>FETCH-LOGICAL-c347t-68f1fdedfb813307c5d0837d71a41ff816672fa82a72c759dab1f550e54b11963</cites><orcidid>0000-0002-3375-6694 ; 0000-0002-0512-880X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8501973$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8501973$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30346283$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhan, Kun</creatorcontrib><creatorcontrib>Nie, Feiping</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Yang, Yi</creatorcontrib><title>Multiview Consensus Graph Clustering</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>A graph is usually formed to reveal the relationship between data points and graph structure is encoded by the affinity matrix. Most graph-based multiview clustering methods use predefined affinity matrices and the clustering performance highly depends on the quality of graph. We learn a consensus graph with minimizing disagreement between different views and constraining the rank of the Laplacian matrix. Since diverse views admit the same underlying cluster structure across multiple views, we use a new disagreement cost function for regularizing graphs from different views toward a common consensus. Simultaneously, we impose a rank constraint on the Laplacian matrix to learn the consensus graph with exactly k connected components where k is the number of clusters, which is different from using fixed affinity matrices in most existing graph-based methods. With the learned consensus graph, we can directly obtain the cluster labels without performing any post-processing, such as kmeans clustering algorithm in spectral clustering-based methods. A multiview consensus clustering method is proposed to learn such a graph. An efficient iterative updating algorithm is derived to optimize the proposed challenging optimization problem. Experiments on several benchmark datasets have demonstrated the effectiveness of the proposed method in terms of seven metrics.</description><subject>Affinity</subject><subject>Algorithms</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Coding</subject><subject>Data points</subject><subject>Eigenvalues and eigenfunctions</subject><subject>graph learning</subject><subject>image retrieval</subject><subject>Iterative methods</subject><subject>Kernel</subject><subject>Laplace equations</subject><subject>Learning systems</subject><subject>Linear programming</subject><subject>multiview clustering</subject><subject>Periodic structures</subject><subject>Post-processing</subject><subject>Unsupervised learning</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRrFbvgiAFPXhJndnvHCVoLVT0UM9hm-xqSprU3UTx37ultQcvMwPzzMvwEHKBMEaE9G4-fR1TQD2mWinGxAE5wZRjAsDpYZxBqEQhTwfkNIQlAHKB8pgMGDAuqWYn5Oa5r7vqq7Lfo6xtgm1CH0YTb9Yfo6zuQ2d91byfkSNn6mDPd31I3h4f5tlTMnuZTLP7WVIwrrpEaoeutKVbaGQMVCFK0EyVCg1H5zRKqagzmhpFCyXS0izQCQFW8AViKtmQ3G5z17797G3o8lUVClvXprFtH3KKVKYoY43o9T902fa-id9FilHgSmoaKdhShW9D8Nbla1-tjP_JEfKNwTwazDcG853BeHK1C-4XK1vuD_6UReByC1TW2v1aC8A0BvwCn1Fx2w</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Zhan, Kun</creator><creator>Nie, Feiping</creator><creator>Wang, Jing</creator><creator>Yang, Yi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3375-6694</orcidid><orcidid>https://orcid.org/0000-0002-0512-880X</orcidid></search><sort><creationdate>20190301</creationdate><title>Multiview Consensus Graph Clustering</title><author>Zhan, Kun ; Nie, Feiping ; Wang, Jing ; Yang, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-68f1fdedfb813307c5d0837d71a41ff816672fa82a72c759dab1f550e54b11963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Affinity</topic><topic>Algorithms</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Coding</topic><topic>Data points</topic><topic>Eigenvalues and eigenfunctions</topic><topic>graph learning</topic><topic>image retrieval</topic><topic>Iterative methods</topic><topic>Kernel</topic><topic>Laplace equations</topic><topic>Learning systems</topic><topic>Linear programming</topic><topic>multiview clustering</topic><topic>Periodic structures</topic><topic>Post-processing</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhan, Kun</creatorcontrib><creatorcontrib>Nie, Feiping</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Yang, Yi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhan, Kun</au><au>Nie, Feiping</au><au>Wang, Jing</au><au>Yang, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiview Consensus Graph Clustering</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>28</volume><issue>3</issue><spage>1261</spage><epage>1270</epage><pages>1261-1270</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>A graph is usually formed to reveal the relationship between data points and graph structure is encoded by the affinity matrix. Most graph-based multiview clustering methods use predefined affinity matrices and the clustering performance highly depends on the quality of graph. We learn a consensus graph with minimizing disagreement between different views and constraining the rank of the Laplacian matrix. Since diverse views admit the same underlying cluster structure across multiple views, we use a new disagreement cost function for regularizing graphs from different views toward a common consensus. Simultaneously, we impose a rank constraint on the Laplacian matrix to learn the consensus graph with exactly k connected components where k is the number of clusters, which is different from using fixed affinity matrices in most existing graph-based methods. With the learned consensus graph, we can directly obtain the cluster labels without performing any post-processing, such as kmeans clustering algorithm in spectral clustering-based methods. A multiview consensus clustering method is proposed to learn such a graph. An efficient iterative updating algorithm is derived to optimize the proposed challenging optimization problem. Experiments on several benchmark datasets have demonstrated the effectiveness of the proposed method in terms of seven metrics.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30346283</pmid><doi>10.1109/TIP.2018.2877335</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3375-6694</orcidid><orcidid>https://orcid.org/0000-0002-0512-880X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2019-03, Vol.28 (3), p.1261-1270
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_miscellaneous_2126916126
source IEEE Electronic Library (IEL)
subjects Affinity
Algorithms
Clustering
Clustering algorithms
Coding
Data points
Eigenvalues and eigenfunctions
graph learning
image retrieval
Iterative methods
Kernel
Laplace equations
Learning systems
Linear programming
multiview clustering
Periodic structures
Post-processing
Unsupervised learning
title Multiview Consensus Graph Clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A12%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiview%20Consensus%20Graph%20Clustering&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Zhan,%20Kun&rft.date=2019-03-01&rft.volume=28&rft.issue=3&rft.spage=1261&rft.epage=1270&rft.pages=1261-1270&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2018.2877335&rft_dat=%3Cproquest_RIE%3E2126916126%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132047682&rft_id=info:pmid/30346283&rft_ieee_id=8501973&rfr_iscdi=true