Autophagic dysfunction in Alzheimer’s disease: Cellular and molecular mechanistic approaches to halt Alzheimer’s pathogenesis

Autophagy is a preserved cytoplasmic self‐degradation process and endorses recycling of intracellular constituents into bioenergetics for the controlling of cellular homeostasis. Functional autophagy process is essential in eliminating cytoplasmic waste components and helps in the recycling of some...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular physiology 2019-06, Vol.234 (6), p.8094-8112
Hauptverfasser: Uddin, Md. Sahab, Mamun, Abdullah Al, Labu, Zubair Khalid, Hidalgo‐Lanussa, Oscar, Barreto, George E., Ashraf, Ghulam Md
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8112
container_issue 6
container_start_page 8094
container_title Journal of cellular physiology
container_volume 234
creator Uddin, Md. Sahab
Mamun, Abdullah Al
Labu, Zubair Khalid
Hidalgo‐Lanussa, Oscar
Barreto, George E.
Ashraf, Ghulam Md
description Autophagy is a preserved cytoplasmic self‐degradation process and endorses recycling of intracellular constituents into bioenergetics for the controlling of cellular homeostasis. Functional autophagy process is essential in eliminating cytoplasmic waste components and helps in the recycling of some of its constituents. Studies have revealed that neurodegenerative disorders may be caused by mutations in autophagy‐related genes and alterations of autophagic flux. Alzheimer’s disease (AD) is an irrevocable deleterious neurodegenerative disorder characterized by the formation of senile plaques and neurofibrillary tangles (NFTs) in the hippocampus and cortex. In the central nervous system of healthy people, there is no accretion of amyloid β (Aβ) peptides due to the balance between generation and degradation of Aβ. However, for AD patients, the generation of Aβ peptides is higher than lysis that causes accretion of Aβ. Likewise, the maturation of autophagolysosomes and inhibition of their retrograde transport creates favorable conditions for Aβ accumulation. Furthermore, increasing mammalian target of rapamycin (mTOR) signaling raises tau levels as well as phosphorylation. Alteration of mTOR activity occurs in the early stage of AD. In addition, copious evidence links autophagic/lysosomal dysfunction in AD. Compromised mitophagy is also accountable for dysfunctional mitochondria that raises Alzheimer’s pathology. Therefore, autophagic dysfunction might lead to the deposit of atypical proteins in the AD brain and manipulation of autophagy could be considered as an emerging therapeutic target. This review highlights the critical linkage of autophagy in the pathogenesis of AD, and avows a new insight to search for therapeutic target for blocking Alzheimer’s pathogenesis. 1. Controlled autophagy is important for cellular homeostasis. 2. Dysfunctional autophagic mechanisms are implicated in many pathological states especially neurodegeneration. 3. Potential synthetic and natural compounds stimulate autophagy as a protective mechanism to abate Alzheimer’s pathogenesis.
doi_str_mv 10.1002/jcp.27588
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2126913764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126913764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4198-c773e3419d62bc5072230ae2bc7625747b4354a3d47fff65c78225ac3b873f733</originalsourceid><addsrcrecordid>eNp1kUtKxEAQhhtRnPGx8ALS4EYXmelX0om7IfhE0IWuQ0-nYnpI0jGdIONKj-H1PIntjLoQXFUV9fFRxY_QASUTSgibLnQ7YTKM4w00piSRgYhCtonGfkeDJBR0hHacWxBCkoTzbTTihEcs5HSM3mZDb9tSPRqN86Urhkb3xjbYNHhWvZRgaug-Xt8dzo0D5eAUp1BVQ6U6rJoc17YCvZpq0KVqjOu9SLVtZ5UuweHe4lJV_R9Zq_rSPkIDzrg9tFWoysH-d91FD-dn9-llcHN7cZXObgItaBIHWkoO3Ld5xOY6JJIxThT4XvpXpJBzwUOheC5kURRRqGXMWKg0n8eSF5LzXXS89vrbngZwfVYbp_0zqgE7uIxRFiWUy0h49OgPurBD1_jrPBXzJBaRZJ46WVO6s851UGRtZ2rVLTNKsq9cMp9LtsrFs4ffxmFeQ_5L_gThgekaeDYVLP83Zdfp3Vr5CQAzmfc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2183984672</pqid></control><display><type>article</type><title>Autophagic dysfunction in Alzheimer’s disease: Cellular and molecular mechanistic approaches to halt Alzheimer’s pathogenesis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Uddin, Md. Sahab ; Mamun, Abdullah Al ; Labu, Zubair Khalid ; Hidalgo‐Lanussa, Oscar ; Barreto, George E. ; Ashraf, Ghulam Md</creator><creatorcontrib>Uddin, Md. Sahab ; Mamun, Abdullah Al ; Labu, Zubair Khalid ; Hidalgo‐Lanussa, Oscar ; Barreto, George E. ; Ashraf, Ghulam Md</creatorcontrib><description>Autophagy is a preserved cytoplasmic self‐degradation process and endorses recycling of intracellular constituents into bioenergetics for the controlling of cellular homeostasis. Functional autophagy process is essential in eliminating cytoplasmic waste components and helps in the recycling of some of its constituents. Studies have revealed that neurodegenerative disorders may be caused by mutations in autophagy‐related genes and alterations of autophagic flux. Alzheimer’s disease (AD) is an irrevocable deleterious neurodegenerative disorder characterized by the formation of senile plaques and neurofibrillary tangles (NFTs) in the hippocampus and cortex. In the central nervous system of healthy people, there is no accretion of amyloid β (Aβ) peptides due to the balance between generation and degradation of Aβ. However, for AD patients, the generation of Aβ peptides is higher than lysis that causes accretion of Aβ. Likewise, the maturation of autophagolysosomes and inhibition of their retrograde transport creates favorable conditions for Aβ accumulation. Furthermore, increasing mammalian target of rapamycin (mTOR) signaling raises tau levels as well as phosphorylation. Alteration of mTOR activity occurs in the early stage of AD. In addition, copious evidence links autophagic/lysosomal dysfunction in AD. Compromised mitophagy is also accountable for dysfunctional mitochondria that raises Alzheimer’s pathology. Therefore, autophagic dysfunction might lead to the deposit of atypical proteins in the AD brain and manipulation of autophagy could be considered as an emerging therapeutic target. This review highlights the critical linkage of autophagy in the pathogenesis of AD, and avows a new insight to search for therapeutic target for blocking Alzheimer’s pathogenesis. 1. Controlled autophagy is important for cellular homeostasis. 2. Dysfunctional autophagic mechanisms are implicated in many pathological states especially neurodegeneration. 3. Potential synthetic and natural compounds stimulate autophagy as a protective mechanism to abate Alzheimer’s pathogenesis.</description><identifier>ISSN: 0021-9541</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.27588</identifier><identifier>PMID: 30362531</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Alzheimer Disease - genetics ; Alzheimer Disease - metabolism ; Alzheimer Disease - pathology ; Alzheimer's disease ; Amyloid ; Amyloid beta-Peptides - genetics ; Amyloid beta-Peptides - metabolism ; amyloid β ; Autophagosomes - metabolism ; Autophagy ; Autophagy - genetics ; Bioenergetics ; Brain ; Central nervous system ; Constituents ; Cytoplasm - genetics ; Cytoplasm - metabolism ; Degradation ; Deposition ; Homeostasis ; Humans ; Lysis ; lysosomal dysfunction ; Mitochondria ; Mitochondria - genetics ; Mitochondria - metabolism ; mitophagy ; Mitophagy - genetics ; Mutation ; Neurodegenerative diseases ; Neurofibrillary tangles ; Pathogenesis ; Peptides ; Phagocytosis ; Phosphorylation ; Proteins ; Proteolysis ; Rapamycin ; Retrograde transport ; Senile plaques ; Signal Transduction - genetics ; Tau protein ; Therapeutic applications ; TOR protein ; TOR Serine-Threonine Kinases - genetics</subject><ispartof>Journal of cellular physiology, 2019-06, Vol.234 (6), p.8094-8112</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4198-c773e3419d62bc5072230ae2bc7625747b4354a3d47fff65c78225ac3b873f733</citedby><cites>FETCH-LOGICAL-c4198-c773e3419d62bc5072230ae2bc7625747b4354a3d47fff65c78225ac3b873f733</cites><orcidid>0000-0002-6644-1971 ; 0000-0002-0805-7840</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcp.27588$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcp.27588$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30362531$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Uddin, Md. Sahab</creatorcontrib><creatorcontrib>Mamun, Abdullah Al</creatorcontrib><creatorcontrib>Labu, Zubair Khalid</creatorcontrib><creatorcontrib>Hidalgo‐Lanussa, Oscar</creatorcontrib><creatorcontrib>Barreto, George E.</creatorcontrib><creatorcontrib>Ashraf, Ghulam Md</creatorcontrib><title>Autophagic dysfunction in Alzheimer’s disease: Cellular and molecular mechanistic approaches to halt Alzheimer’s pathogenesis</title><title>Journal of cellular physiology</title><addtitle>J Cell Physiol</addtitle><description>Autophagy is a preserved cytoplasmic self‐degradation process and endorses recycling of intracellular constituents into bioenergetics for the controlling of cellular homeostasis. Functional autophagy process is essential in eliminating cytoplasmic waste components and helps in the recycling of some of its constituents. Studies have revealed that neurodegenerative disorders may be caused by mutations in autophagy‐related genes and alterations of autophagic flux. Alzheimer’s disease (AD) is an irrevocable deleterious neurodegenerative disorder characterized by the formation of senile plaques and neurofibrillary tangles (NFTs) in the hippocampus and cortex. In the central nervous system of healthy people, there is no accretion of amyloid β (Aβ) peptides due to the balance between generation and degradation of Aβ. However, for AD patients, the generation of Aβ peptides is higher than lysis that causes accretion of Aβ. Likewise, the maturation of autophagolysosomes and inhibition of their retrograde transport creates favorable conditions for Aβ accumulation. Furthermore, increasing mammalian target of rapamycin (mTOR) signaling raises tau levels as well as phosphorylation. Alteration of mTOR activity occurs in the early stage of AD. In addition, copious evidence links autophagic/lysosomal dysfunction in AD. Compromised mitophagy is also accountable for dysfunctional mitochondria that raises Alzheimer’s pathology. Therefore, autophagic dysfunction might lead to the deposit of atypical proteins in the AD brain and manipulation of autophagy could be considered as an emerging therapeutic target. This review highlights the critical linkage of autophagy in the pathogenesis of AD, and avows a new insight to search for therapeutic target for blocking Alzheimer’s pathogenesis. 1. Controlled autophagy is important for cellular homeostasis. 2. Dysfunctional autophagic mechanisms are implicated in many pathological states especially neurodegeneration. 3. Potential synthetic and natural compounds stimulate autophagy as a protective mechanism to abate Alzheimer’s pathogenesis.</description><subject>Alzheimer Disease - genetics</subject><subject>Alzheimer Disease - metabolism</subject><subject>Alzheimer Disease - pathology</subject><subject>Alzheimer's disease</subject><subject>Amyloid</subject><subject>Amyloid beta-Peptides - genetics</subject><subject>Amyloid beta-Peptides - metabolism</subject><subject>amyloid β</subject><subject>Autophagosomes - metabolism</subject><subject>Autophagy</subject><subject>Autophagy - genetics</subject><subject>Bioenergetics</subject><subject>Brain</subject><subject>Central nervous system</subject><subject>Constituents</subject><subject>Cytoplasm - genetics</subject><subject>Cytoplasm - metabolism</subject><subject>Degradation</subject><subject>Deposition</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Lysis</subject><subject>lysosomal dysfunction</subject><subject>Mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>mitophagy</subject><subject>Mitophagy - genetics</subject><subject>Mutation</subject><subject>Neurodegenerative diseases</subject><subject>Neurofibrillary tangles</subject><subject>Pathogenesis</subject><subject>Peptides</subject><subject>Phagocytosis</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Rapamycin</subject><subject>Retrograde transport</subject><subject>Senile plaques</subject><subject>Signal Transduction - genetics</subject><subject>Tau protein</subject><subject>Therapeutic applications</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - genetics</subject><issn>0021-9541</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUtKxEAQhhtRnPGx8ALS4EYXmelX0om7IfhE0IWuQ0-nYnpI0jGdIONKj-H1PIntjLoQXFUV9fFRxY_QASUTSgibLnQ7YTKM4w00piSRgYhCtonGfkeDJBR0hHacWxBCkoTzbTTihEcs5HSM3mZDb9tSPRqN86Urhkb3xjbYNHhWvZRgaug-Xt8dzo0D5eAUp1BVQ6U6rJoc17YCvZpq0KVqjOu9SLVtZ5UuweHe4lJV_R9Zq_rSPkIDzrg9tFWoysH-d91FD-dn9-llcHN7cZXObgItaBIHWkoO3Ld5xOY6JJIxThT4XvpXpJBzwUOheC5kURRRqGXMWKg0n8eSF5LzXXS89vrbngZwfVYbp_0zqgE7uIxRFiWUy0h49OgPurBD1_jrPBXzJBaRZJ46WVO6s851UGRtZ2rVLTNKsq9cMp9LtsrFs4ffxmFeQ_5L_gThgekaeDYVLP83Zdfp3Vr5CQAzmfc</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Uddin, Md. Sahab</creator><creator>Mamun, Abdullah Al</creator><creator>Labu, Zubair Khalid</creator><creator>Hidalgo‐Lanussa, Oscar</creator><creator>Barreto, George E.</creator><creator>Ashraf, Ghulam Md</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6644-1971</orcidid><orcidid>https://orcid.org/0000-0002-0805-7840</orcidid></search><sort><creationdate>201906</creationdate><title>Autophagic dysfunction in Alzheimer’s disease: Cellular and molecular mechanistic approaches to halt Alzheimer’s pathogenesis</title><author>Uddin, Md. Sahab ; Mamun, Abdullah Al ; Labu, Zubair Khalid ; Hidalgo‐Lanussa, Oscar ; Barreto, George E. ; Ashraf, Ghulam Md</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4198-c773e3419d62bc5072230ae2bc7625747b4354a3d47fff65c78225ac3b873f733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alzheimer Disease - genetics</topic><topic>Alzheimer Disease - metabolism</topic><topic>Alzheimer Disease - pathology</topic><topic>Alzheimer's disease</topic><topic>Amyloid</topic><topic>Amyloid beta-Peptides - genetics</topic><topic>Amyloid beta-Peptides - metabolism</topic><topic>amyloid β</topic><topic>Autophagosomes - metabolism</topic><topic>Autophagy</topic><topic>Autophagy - genetics</topic><topic>Bioenergetics</topic><topic>Brain</topic><topic>Central nervous system</topic><topic>Constituents</topic><topic>Cytoplasm - genetics</topic><topic>Cytoplasm - metabolism</topic><topic>Degradation</topic><topic>Deposition</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Lysis</topic><topic>lysosomal dysfunction</topic><topic>Mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>mitophagy</topic><topic>Mitophagy - genetics</topic><topic>Mutation</topic><topic>Neurodegenerative diseases</topic><topic>Neurofibrillary tangles</topic><topic>Pathogenesis</topic><topic>Peptides</topic><topic>Phagocytosis</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Rapamycin</topic><topic>Retrograde transport</topic><topic>Senile plaques</topic><topic>Signal Transduction - genetics</topic><topic>Tau protein</topic><topic>Therapeutic applications</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uddin, Md. Sahab</creatorcontrib><creatorcontrib>Mamun, Abdullah Al</creatorcontrib><creatorcontrib>Labu, Zubair Khalid</creatorcontrib><creatorcontrib>Hidalgo‐Lanussa, Oscar</creatorcontrib><creatorcontrib>Barreto, George E.</creatorcontrib><creatorcontrib>Ashraf, Ghulam Md</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cellular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uddin, Md. Sahab</au><au>Mamun, Abdullah Al</au><au>Labu, Zubair Khalid</au><au>Hidalgo‐Lanussa, Oscar</au><au>Barreto, George E.</au><au>Ashraf, Ghulam Md</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autophagic dysfunction in Alzheimer’s disease: Cellular and molecular mechanistic approaches to halt Alzheimer’s pathogenesis</atitle><jtitle>Journal of cellular physiology</jtitle><addtitle>J Cell Physiol</addtitle><date>2019-06</date><risdate>2019</risdate><volume>234</volume><issue>6</issue><spage>8094</spage><epage>8112</epage><pages>8094-8112</pages><issn>0021-9541</issn><eissn>1097-4652</eissn><abstract>Autophagy is a preserved cytoplasmic self‐degradation process and endorses recycling of intracellular constituents into bioenergetics for the controlling of cellular homeostasis. Functional autophagy process is essential in eliminating cytoplasmic waste components and helps in the recycling of some of its constituents. Studies have revealed that neurodegenerative disorders may be caused by mutations in autophagy‐related genes and alterations of autophagic flux. Alzheimer’s disease (AD) is an irrevocable deleterious neurodegenerative disorder characterized by the formation of senile plaques and neurofibrillary tangles (NFTs) in the hippocampus and cortex. In the central nervous system of healthy people, there is no accretion of amyloid β (Aβ) peptides due to the balance between generation and degradation of Aβ. However, for AD patients, the generation of Aβ peptides is higher than lysis that causes accretion of Aβ. Likewise, the maturation of autophagolysosomes and inhibition of their retrograde transport creates favorable conditions for Aβ accumulation. Furthermore, increasing mammalian target of rapamycin (mTOR) signaling raises tau levels as well as phosphorylation. Alteration of mTOR activity occurs in the early stage of AD. In addition, copious evidence links autophagic/lysosomal dysfunction in AD. Compromised mitophagy is also accountable for dysfunctional mitochondria that raises Alzheimer’s pathology. Therefore, autophagic dysfunction might lead to the deposit of atypical proteins in the AD brain and manipulation of autophagy could be considered as an emerging therapeutic target. This review highlights the critical linkage of autophagy in the pathogenesis of AD, and avows a new insight to search for therapeutic target for blocking Alzheimer’s pathogenesis. 1. Controlled autophagy is important for cellular homeostasis. 2. Dysfunctional autophagic mechanisms are implicated in many pathological states especially neurodegeneration. 3. Potential synthetic and natural compounds stimulate autophagy as a protective mechanism to abate Alzheimer’s pathogenesis.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30362531</pmid><doi>10.1002/jcp.27588</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-6644-1971</orcidid><orcidid>https://orcid.org/0000-0002-0805-7840</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9541
ispartof Journal of cellular physiology, 2019-06, Vol.234 (6), p.8094-8112
issn 0021-9541
1097-4652
language eng
recordid cdi_proquest_miscellaneous_2126913764
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Alzheimer Disease - genetics
Alzheimer Disease - metabolism
Alzheimer Disease - pathology
Alzheimer's disease
Amyloid
Amyloid beta-Peptides - genetics
Amyloid beta-Peptides - metabolism
amyloid β
Autophagosomes - metabolism
Autophagy
Autophagy - genetics
Bioenergetics
Brain
Central nervous system
Constituents
Cytoplasm - genetics
Cytoplasm - metabolism
Degradation
Deposition
Homeostasis
Humans
Lysis
lysosomal dysfunction
Mitochondria
Mitochondria - genetics
Mitochondria - metabolism
mitophagy
Mitophagy - genetics
Mutation
Neurodegenerative diseases
Neurofibrillary tangles
Pathogenesis
Peptides
Phagocytosis
Phosphorylation
Proteins
Proteolysis
Rapamycin
Retrograde transport
Senile plaques
Signal Transduction - genetics
Tau protein
Therapeutic applications
TOR protein
TOR Serine-Threonine Kinases - genetics
title Autophagic dysfunction in Alzheimer’s disease: Cellular and molecular mechanistic approaches to halt Alzheimer’s pathogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A42%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autophagic%20dysfunction%20in%20Alzheimer%E2%80%99s%20disease:%20Cellular%20and%20molecular%20mechanistic%20approaches%20to%20halt%20Alzheimer%E2%80%99s%20pathogenesis&rft.jtitle=Journal%20of%20cellular%20physiology&rft.au=Uddin,%20Md.%20Sahab&rft.date=2019-06&rft.volume=234&rft.issue=6&rft.spage=8094&rft.epage=8112&rft.pages=8094-8112&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.27588&rft_dat=%3Cproquest_cross%3E2126913764%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2183984672&rft_id=info:pmid/30362531&rfr_iscdi=true