Autophagic dysfunction in Alzheimer’s disease: Cellular and molecular mechanistic approaches to halt Alzheimer’s pathogenesis
Autophagy is a preserved cytoplasmic self‐degradation process and endorses recycling of intracellular constituents into bioenergetics for the controlling of cellular homeostasis. Functional autophagy process is essential in eliminating cytoplasmic waste components and helps in the recycling of some...
Gespeichert in:
Veröffentlicht in: | Journal of cellular physiology 2019-06, Vol.234 (6), p.8094-8112 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8112 |
---|---|
container_issue | 6 |
container_start_page | 8094 |
container_title | Journal of cellular physiology |
container_volume | 234 |
creator | Uddin, Md. Sahab Mamun, Abdullah Al Labu, Zubair Khalid Hidalgo‐Lanussa, Oscar Barreto, George E. Ashraf, Ghulam Md |
description | Autophagy is a preserved cytoplasmic self‐degradation process and endorses recycling of intracellular constituents into bioenergetics for the controlling of cellular homeostasis. Functional autophagy process is essential in eliminating cytoplasmic waste components and helps in the recycling of some of its constituents. Studies have revealed that neurodegenerative disorders may be caused by mutations in autophagy‐related genes and alterations of autophagic flux. Alzheimer’s disease (AD) is an irrevocable deleterious neurodegenerative disorder characterized by the formation of senile plaques and neurofibrillary tangles (NFTs) in the hippocampus and cortex. In the central nervous system of healthy people, there is no accretion of amyloid β (Aβ) peptides due to the balance between generation and degradation of Aβ. However, for AD patients, the generation of Aβ peptides is higher than lysis that causes accretion of Aβ. Likewise, the maturation of autophagolysosomes and inhibition of their retrograde transport creates favorable conditions for Aβ accumulation. Furthermore, increasing mammalian target of rapamycin (mTOR) signaling raises tau levels as well as phosphorylation. Alteration of mTOR activity occurs in the early stage of AD. In addition, copious evidence links autophagic/lysosomal dysfunction in AD. Compromised mitophagy is also accountable for dysfunctional mitochondria that raises Alzheimer’s pathology. Therefore, autophagic dysfunction might lead to the deposit of atypical proteins in the AD brain and manipulation of autophagy could be considered as an emerging therapeutic target. This review highlights the critical linkage of autophagy in the pathogenesis of AD, and avows a new insight to search for therapeutic target for blocking Alzheimer’s pathogenesis.
1.
Controlled autophagy is important for cellular homeostasis.
2.
Dysfunctional autophagic mechanisms are implicated in many pathological states especially neurodegeneration.
3.
Potential synthetic and natural compounds stimulate autophagy as a protective mechanism to abate Alzheimer’s pathogenesis. |
doi_str_mv | 10.1002/jcp.27588 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2126913764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126913764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4198-c773e3419d62bc5072230ae2bc7625747b4354a3d47fff65c78225ac3b873f733</originalsourceid><addsrcrecordid>eNp1kUtKxEAQhhtRnPGx8ALS4EYXmelX0om7IfhE0IWuQ0-nYnpI0jGdIONKj-H1PIntjLoQXFUV9fFRxY_QASUTSgibLnQ7YTKM4w00piSRgYhCtonGfkeDJBR0hHacWxBCkoTzbTTihEcs5HSM3mZDb9tSPRqN86Urhkb3xjbYNHhWvZRgaug-Xt8dzo0D5eAUp1BVQ6U6rJoc17YCvZpq0KVqjOu9SLVtZ5UuweHe4lJV_R9Zq_rSPkIDzrg9tFWoysH-d91FD-dn9-llcHN7cZXObgItaBIHWkoO3Ld5xOY6JJIxThT4XvpXpJBzwUOheC5kURRRqGXMWKg0n8eSF5LzXXS89vrbngZwfVYbp_0zqgE7uIxRFiWUy0h49OgPurBD1_jrPBXzJBaRZJ46WVO6s851UGRtZ2rVLTNKsq9cMp9LtsrFs4ffxmFeQ_5L_gThgekaeDYVLP83Zdfp3Vr5CQAzmfc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2183984672</pqid></control><display><type>article</type><title>Autophagic dysfunction in Alzheimer’s disease: Cellular and molecular mechanistic approaches to halt Alzheimer’s pathogenesis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Uddin, Md. Sahab ; Mamun, Abdullah Al ; Labu, Zubair Khalid ; Hidalgo‐Lanussa, Oscar ; Barreto, George E. ; Ashraf, Ghulam Md</creator><creatorcontrib>Uddin, Md. Sahab ; Mamun, Abdullah Al ; Labu, Zubair Khalid ; Hidalgo‐Lanussa, Oscar ; Barreto, George E. ; Ashraf, Ghulam Md</creatorcontrib><description>Autophagy is a preserved cytoplasmic self‐degradation process and endorses recycling of intracellular constituents into bioenergetics for the controlling of cellular homeostasis. Functional autophagy process is essential in eliminating cytoplasmic waste components and helps in the recycling of some of its constituents. Studies have revealed that neurodegenerative disorders may be caused by mutations in autophagy‐related genes and alterations of autophagic flux. Alzheimer’s disease (AD) is an irrevocable deleterious neurodegenerative disorder characterized by the formation of senile plaques and neurofibrillary tangles (NFTs) in the hippocampus and cortex. In the central nervous system of healthy people, there is no accretion of amyloid β (Aβ) peptides due to the balance between generation and degradation of Aβ. However, for AD patients, the generation of Aβ peptides is higher than lysis that causes accretion of Aβ. Likewise, the maturation of autophagolysosomes and inhibition of their retrograde transport creates favorable conditions for Aβ accumulation. Furthermore, increasing mammalian target of rapamycin (mTOR) signaling raises tau levels as well as phosphorylation. Alteration of mTOR activity occurs in the early stage of AD. In addition, copious evidence links autophagic/lysosomal dysfunction in AD. Compromised mitophagy is also accountable for dysfunctional mitochondria that raises Alzheimer’s pathology. Therefore, autophagic dysfunction might lead to the deposit of atypical proteins in the AD brain and manipulation of autophagy could be considered as an emerging therapeutic target. This review highlights the critical linkage of autophagy in the pathogenesis of AD, and avows a new insight to search for therapeutic target for blocking Alzheimer’s pathogenesis.
1.
Controlled autophagy is important for cellular homeostasis.
2.
Dysfunctional autophagic mechanisms are implicated in many pathological states especially neurodegeneration.
3.
Potential synthetic and natural compounds stimulate autophagy as a protective mechanism to abate Alzheimer’s pathogenesis.</description><identifier>ISSN: 0021-9541</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.27588</identifier><identifier>PMID: 30362531</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Alzheimer Disease - genetics ; Alzheimer Disease - metabolism ; Alzheimer Disease - pathology ; Alzheimer's disease ; Amyloid ; Amyloid beta-Peptides - genetics ; Amyloid beta-Peptides - metabolism ; amyloid β ; Autophagosomes - metabolism ; Autophagy ; Autophagy - genetics ; Bioenergetics ; Brain ; Central nervous system ; Constituents ; Cytoplasm - genetics ; Cytoplasm - metabolism ; Degradation ; Deposition ; Homeostasis ; Humans ; Lysis ; lysosomal dysfunction ; Mitochondria ; Mitochondria - genetics ; Mitochondria - metabolism ; mitophagy ; Mitophagy - genetics ; Mutation ; Neurodegenerative diseases ; Neurofibrillary tangles ; Pathogenesis ; Peptides ; Phagocytosis ; Phosphorylation ; Proteins ; Proteolysis ; Rapamycin ; Retrograde transport ; Senile plaques ; Signal Transduction - genetics ; Tau protein ; Therapeutic applications ; TOR protein ; TOR Serine-Threonine Kinases - genetics</subject><ispartof>Journal of cellular physiology, 2019-06, Vol.234 (6), p.8094-8112</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4198-c773e3419d62bc5072230ae2bc7625747b4354a3d47fff65c78225ac3b873f733</citedby><cites>FETCH-LOGICAL-c4198-c773e3419d62bc5072230ae2bc7625747b4354a3d47fff65c78225ac3b873f733</cites><orcidid>0000-0002-6644-1971 ; 0000-0002-0805-7840</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcp.27588$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcp.27588$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30362531$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Uddin, Md. Sahab</creatorcontrib><creatorcontrib>Mamun, Abdullah Al</creatorcontrib><creatorcontrib>Labu, Zubair Khalid</creatorcontrib><creatorcontrib>Hidalgo‐Lanussa, Oscar</creatorcontrib><creatorcontrib>Barreto, George E.</creatorcontrib><creatorcontrib>Ashraf, Ghulam Md</creatorcontrib><title>Autophagic dysfunction in Alzheimer’s disease: Cellular and molecular mechanistic approaches to halt Alzheimer’s pathogenesis</title><title>Journal of cellular physiology</title><addtitle>J Cell Physiol</addtitle><description>Autophagy is a preserved cytoplasmic self‐degradation process and endorses recycling of intracellular constituents into bioenergetics for the controlling of cellular homeostasis. Functional autophagy process is essential in eliminating cytoplasmic waste components and helps in the recycling of some of its constituents. Studies have revealed that neurodegenerative disorders may be caused by mutations in autophagy‐related genes and alterations of autophagic flux. Alzheimer’s disease (AD) is an irrevocable deleterious neurodegenerative disorder characterized by the formation of senile plaques and neurofibrillary tangles (NFTs) in the hippocampus and cortex. In the central nervous system of healthy people, there is no accretion of amyloid β (Aβ) peptides due to the balance between generation and degradation of Aβ. However, for AD patients, the generation of Aβ peptides is higher than lysis that causes accretion of Aβ. Likewise, the maturation of autophagolysosomes and inhibition of their retrograde transport creates favorable conditions for Aβ accumulation. Furthermore, increasing mammalian target of rapamycin (mTOR) signaling raises tau levels as well as phosphorylation. Alteration of mTOR activity occurs in the early stage of AD. In addition, copious evidence links autophagic/lysosomal dysfunction in AD. Compromised mitophagy is also accountable for dysfunctional mitochondria that raises Alzheimer’s pathology. Therefore, autophagic dysfunction might lead to the deposit of atypical proteins in the AD brain and manipulation of autophagy could be considered as an emerging therapeutic target. This review highlights the critical linkage of autophagy in the pathogenesis of AD, and avows a new insight to search for therapeutic target for blocking Alzheimer’s pathogenesis.
1.
Controlled autophagy is important for cellular homeostasis.
2.
Dysfunctional autophagic mechanisms are implicated in many pathological states especially neurodegeneration.
3.
Potential synthetic and natural compounds stimulate autophagy as a protective mechanism to abate Alzheimer’s pathogenesis.</description><subject>Alzheimer Disease - genetics</subject><subject>Alzheimer Disease - metabolism</subject><subject>Alzheimer Disease - pathology</subject><subject>Alzheimer's disease</subject><subject>Amyloid</subject><subject>Amyloid beta-Peptides - genetics</subject><subject>Amyloid beta-Peptides - metabolism</subject><subject>amyloid β</subject><subject>Autophagosomes - metabolism</subject><subject>Autophagy</subject><subject>Autophagy - genetics</subject><subject>Bioenergetics</subject><subject>Brain</subject><subject>Central nervous system</subject><subject>Constituents</subject><subject>Cytoplasm - genetics</subject><subject>Cytoplasm - metabolism</subject><subject>Degradation</subject><subject>Deposition</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Lysis</subject><subject>lysosomal dysfunction</subject><subject>Mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>mitophagy</subject><subject>Mitophagy - genetics</subject><subject>Mutation</subject><subject>Neurodegenerative diseases</subject><subject>Neurofibrillary tangles</subject><subject>Pathogenesis</subject><subject>Peptides</subject><subject>Phagocytosis</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Rapamycin</subject><subject>Retrograde transport</subject><subject>Senile plaques</subject><subject>Signal Transduction - genetics</subject><subject>Tau protein</subject><subject>Therapeutic applications</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - genetics</subject><issn>0021-9541</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUtKxEAQhhtRnPGx8ALS4EYXmelX0om7IfhE0IWuQ0-nYnpI0jGdIONKj-H1PIntjLoQXFUV9fFRxY_QASUTSgibLnQ7YTKM4w00piSRgYhCtonGfkeDJBR0hHacWxBCkoTzbTTihEcs5HSM3mZDb9tSPRqN86Urhkb3xjbYNHhWvZRgaug-Xt8dzo0D5eAUp1BVQ6U6rJoc17YCvZpq0KVqjOu9SLVtZ5UuweHe4lJV_R9Zq_rSPkIDzrg9tFWoysH-d91FD-dn9-llcHN7cZXObgItaBIHWkoO3Ld5xOY6JJIxThT4XvpXpJBzwUOheC5kURRRqGXMWKg0n8eSF5LzXXS89vrbngZwfVYbp_0zqgE7uIxRFiWUy0h49OgPurBD1_jrPBXzJBaRZJ46WVO6s851UGRtZ2rVLTNKsq9cMp9LtsrFs4ffxmFeQ_5L_gThgekaeDYVLP83Zdfp3Vr5CQAzmfc</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Uddin, Md. Sahab</creator><creator>Mamun, Abdullah Al</creator><creator>Labu, Zubair Khalid</creator><creator>Hidalgo‐Lanussa, Oscar</creator><creator>Barreto, George E.</creator><creator>Ashraf, Ghulam Md</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6644-1971</orcidid><orcidid>https://orcid.org/0000-0002-0805-7840</orcidid></search><sort><creationdate>201906</creationdate><title>Autophagic dysfunction in Alzheimer’s disease: Cellular and molecular mechanistic approaches to halt Alzheimer’s pathogenesis</title><author>Uddin, Md. Sahab ; Mamun, Abdullah Al ; Labu, Zubair Khalid ; Hidalgo‐Lanussa, Oscar ; Barreto, George E. ; Ashraf, Ghulam Md</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4198-c773e3419d62bc5072230ae2bc7625747b4354a3d47fff65c78225ac3b873f733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alzheimer Disease - genetics</topic><topic>Alzheimer Disease - metabolism</topic><topic>Alzheimer Disease - pathology</topic><topic>Alzheimer's disease</topic><topic>Amyloid</topic><topic>Amyloid beta-Peptides - genetics</topic><topic>Amyloid beta-Peptides - metabolism</topic><topic>amyloid β</topic><topic>Autophagosomes - metabolism</topic><topic>Autophagy</topic><topic>Autophagy - genetics</topic><topic>Bioenergetics</topic><topic>Brain</topic><topic>Central nervous system</topic><topic>Constituents</topic><topic>Cytoplasm - genetics</topic><topic>Cytoplasm - metabolism</topic><topic>Degradation</topic><topic>Deposition</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Lysis</topic><topic>lysosomal dysfunction</topic><topic>Mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>mitophagy</topic><topic>Mitophagy - genetics</topic><topic>Mutation</topic><topic>Neurodegenerative diseases</topic><topic>Neurofibrillary tangles</topic><topic>Pathogenesis</topic><topic>Peptides</topic><topic>Phagocytosis</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Rapamycin</topic><topic>Retrograde transport</topic><topic>Senile plaques</topic><topic>Signal Transduction - genetics</topic><topic>Tau protein</topic><topic>Therapeutic applications</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uddin, Md. Sahab</creatorcontrib><creatorcontrib>Mamun, Abdullah Al</creatorcontrib><creatorcontrib>Labu, Zubair Khalid</creatorcontrib><creatorcontrib>Hidalgo‐Lanussa, Oscar</creatorcontrib><creatorcontrib>Barreto, George E.</creatorcontrib><creatorcontrib>Ashraf, Ghulam Md</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cellular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uddin, Md. Sahab</au><au>Mamun, Abdullah Al</au><au>Labu, Zubair Khalid</au><au>Hidalgo‐Lanussa, Oscar</au><au>Barreto, George E.</au><au>Ashraf, Ghulam Md</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autophagic dysfunction in Alzheimer’s disease: Cellular and molecular mechanistic approaches to halt Alzheimer’s pathogenesis</atitle><jtitle>Journal of cellular physiology</jtitle><addtitle>J Cell Physiol</addtitle><date>2019-06</date><risdate>2019</risdate><volume>234</volume><issue>6</issue><spage>8094</spage><epage>8112</epage><pages>8094-8112</pages><issn>0021-9541</issn><eissn>1097-4652</eissn><abstract>Autophagy is a preserved cytoplasmic self‐degradation process and endorses recycling of intracellular constituents into bioenergetics for the controlling of cellular homeostasis. Functional autophagy process is essential in eliminating cytoplasmic waste components and helps in the recycling of some of its constituents. Studies have revealed that neurodegenerative disorders may be caused by mutations in autophagy‐related genes and alterations of autophagic flux. Alzheimer’s disease (AD) is an irrevocable deleterious neurodegenerative disorder characterized by the formation of senile plaques and neurofibrillary tangles (NFTs) in the hippocampus and cortex. In the central nervous system of healthy people, there is no accretion of amyloid β (Aβ) peptides due to the balance between generation and degradation of Aβ. However, for AD patients, the generation of Aβ peptides is higher than lysis that causes accretion of Aβ. Likewise, the maturation of autophagolysosomes and inhibition of their retrograde transport creates favorable conditions for Aβ accumulation. Furthermore, increasing mammalian target of rapamycin (mTOR) signaling raises tau levels as well as phosphorylation. Alteration of mTOR activity occurs in the early stage of AD. In addition, copious evidence links autophagic/lysosomal dysfunction in AD. Compromised mitophagy is also accountable for dysfunctional mitochondria that raises Alzheimer’s pathology. Therefore, autophagic dysfunction might lead to the deposit of atypical proteins in the AD brain and manipulation of autophagy could be considered as an emerging therapeutic target. This review highlights the critical linkage of autophagy in the pathogenesis of AD, and avows a new insight to search for therapeutic target for blocking Alzheimer’s pathogenesis.
1.
Controlled autophagy is important for cellular homeostasis.
2.
Dysfunctional autophagic mechanisms are implicated in many pathological states especially neurodegeneration.
3.
Potential synthetic and natural compounds stimulate autophagy as a protective mechanism to abate Alzheimer’s pathogenesis.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30362531</pmid><doi>10.1002/jcp.27588</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-6644-1971</orcidid><orcidid>https://orcid.org/0000-0002-0805-7840</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9541 |
ispartof | Journal of cellular physiology, 2019-06, Vol.234 (6), p.8094-8112 |
issn | 0021-9541 1097-4652 |
language | eng |
recordid | cdi_proquest_miscellaneous_2126913764 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Alzheimer Disease - genetics Alzheimer Disease - metabolism Alzheimer Disease - pathology Alzheimer's disease Amyloid Amyloid beta-Peptides - genetics Amyloid beta-Peptides - metabolism amyloid β Autophagosomes - metabolism Autophagy Autophagy - genetics Bioenergetics Brain Central nervous system Constituents Cytoplasm - genetics Cytoplasm - metabolism Degradation Deposition Homeostasis Humans Lysis lysosomal dysfunction Mitochondria Mitochondria - genetics Mitochondria - metabolism mitophagy Mitophagy - genetics Mutation Neurodegenerative diseases Neurofibrillary tangles Pathogenesis Peptides Phagocytosis Phosphorylation Proteins Proteolysis Rapamycin Retrograde transport Senile plaques Signal Transduction - genetics Tau protein Therapeutic applications TOR protein TOR Serine-Threonine Kinases - genetics |
title | Autophagic dysfunction in Alzheimer’s disease: Cellular and molecular mechanistic approaches to halt Alzheimer’s pathogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A42%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autophagic%20dysfunction%20in%20Alzheimer%E2%80%99s%20disease:%20Cellular%20and%20molecular%20mechanistic%20approaches%20to%20halt%20Alzheimer%E2%80%99s%20pathogenesis&rft.jtitle=Journal%20of%20cellular%20physiology&rft.au=Uddin,%20Md.%20Sahab&rft.date=2019-06&rft.volume=234&rft.issue=6&rft.spage=8094&rft.epage=8112&rft.pages=8094-8112&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.27588&rft_dat=%3Cproquest_cross%3E2126913764%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2183984672&rft_id=info:pmid/30362531&rfr_iscdi=true |