Prediction of genomic breeding values for reproductive traits in Nellore heifers

The objective of this study was to assess the accuracy of genomic predictions for female reproductive traits in Nellore cattle. A total of 1853 genotyped cows and 305,348 SNPs were used for genomic selection analyses. GBLUP, BAYESCπ, and IBLASSO were applied to estimate SNP effects. The pseudo-pheno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theriogenology 2019-02, Vol.125, p.12-17
Hauptverfasser: Costa, Raphael Bermal, Irano, Natalia, Diaz, Iara Del Pilar Solar, Takada, Luciana, Hermisdorff, Isis da Costa, Carvalheiro, Roberto, Baldi, Fernando, de Oliveira, Henrique Nunes, Tonhati, Humberto, de Albuquerque, Lucia Galvão
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue
container_start_page 12
container_title Theriogenology
container_volume 125
creator Costa, Raphael Bermal
Irano, Natalia
Diaz, Iara Del Pilar Solar
Takada, Luciana
Hermisdorff, Isis da Costa
Carvalheiro, Roberto
Baldi, Fernando
de Oliveira, Henrique Nunes
Tonhati, Humberto
de Albuquerque, Lucia Galvão
description The objective of this study was to assess the accuracy of genomic predictions for female reproductive traits in Nellore cattle. A total of 1853 genotyped cows and 305,348 SNPs were used for genomic selection analyses. GBLUP, BAYESCπ, and IBLASSO were applied to estimate SNP effects. The pseudo-phenotypes used as dependent variables were: observed phenotype (PHEN), adjusted phenotype (CPHEN), estimated breeding value (EBV), and deregressed estimated breeding value (DEBV). Predictive abilities were assessed by the average correlation between CPHEN and genomic estimated breeding value (GEBV) and by the average correlation between DEBV and GEBV in the validation population. Regression coefficients of pseudo-phenotypes on GEBV in the validation population were indicators of prediction bias in GEBV. BAYESCπ showed higher predictive ability to estimate SNP effects and GEBV for all traits.
doi_str_mv 10.1016/j.theriogenology.2018.10.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2126911450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0093691X18309683</els_id><sourcerecordid>2126911450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-3768afcaea221605b0af258d7f40c067afd519fe3b8f19d2a6e713c5420f3e083</originalsourceid><addsrcrecordid>eNqNkE1LBDEMhosoun78BenBg5dZk3anMwNeRPwCUQ8K3kq3k65dZqfazi747-2yKnjzlJC8Sd48jJ0gjBFQnc3HwxtFH2bUhy7MPscCsM6tMeBki42wrppCConbbATQyEI1-LrH9lOaA4BUCnfZnsxJjaIasaenSK23gw89D46vly685dNIudzP-Mp0S0rchcgjvcfQLrN2RXyIxg-J-54_UNeFSPyNvKOYDtmOM12io-94wF6ur54vb4v7x5u7y4v7wspaDYWsVG2cNWSEQAXlFIwTZd1WbgIWVGVcW2LjSE5rh00rjKIKpS0nApwkqOUBO93szaY-ssVBL3yy2YvpKSyTFijy5zgpIUvPN1IbQ0qRnH6PfmHip0bQa6Z6rv8y1Wum625mmsePvy8tpwtqf4d_IGbB9UZA-d-Vp6iT9dTbTDCSHXQb_P8ufQHCR5Iz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126911450</pqid></control><display><type>article</type><title>Prediction of genomic breeding values for reproductive traits in Nellore heifers</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Costa, Raphael Bermal ; Irano, Natalia ; Diaz, Iara Del Pilar Solar ; Takada, Luciana ; Hermisdorff, Isis da Costa ; Carvalheiro, Roberto ; Baldi, Fernando ; de Oliveira, Henrique Nunes ; Tonhati, Humberto ; de Albuquerque, Lucia Galvão</creator><creatorcontrib>Costa, Raphael Bermal ; Irano, Natalia ; Diaz, Iara Del Pilar Solar ; Takada, Luciana ; Hermisdorff, Isis da Costa ; Carvalheiro, Roberto ; Baldi, Fernando ; de Oliveira, Henrique Nunes ; Tonhati, Humberto ; de Albuquerque, Lucia Galvão</creatorcontrib><description>The objective of this study was to assess the accuracy of genomic predictions for female reproductive traits in Nellore cattle. A total of 1853 genotyped cows and 305,348 SNPs were used for genomic selection analyses. GBLUP, BAYESCπ, and IBLASSO were applied to estimate SNP effects. The pseudo-phenotypes used as dependent variables were: observed phenotype (PHEN), adjusted phenotype (CPHEN), estimated breeding value (EBV), and deregressed estimated breeding value (DEBV). Predictive abilities were assessed by the average correlation between CPHEN and genomic estimated breeding value (GEBV) and by the average correlation between DEBV and GEBV in the validation population. Regression coefficients of pseudo-phenotypes on GEBV in the validation population were indicators of prediction bias in GEBV. BAYESCπ showed higher predictive ability to estimate SNP effects and GEBV for all traits.</description><identifier>ISSN: 0093-691X</identifier><identifier>EISSN: 1879-3231</identifier><identifier>DOI: 10.1016/j.theriogenology.2018.10.014</identifier><identifier>PMID: 30368127</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Genomic selection ; Predicative ability ; Reproductive efficiency ; SNP</subject><ispartof>Theriogenology, 2019-02, Vol.125, p.12-17</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-3768afcaea221605b0af258d7f40c067afd519fe3b8f19d2a6e713c5420f3e083</citedby><cites>FETCH-LOGICAL-c386t-3768afcaea221605b0af258d7f40c067afd519fe3b8f19d2a6e713c5420f3e083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0093691X18309683$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30368127$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Costa, Raphael Bermal</creatorcontrib><creatorcontrib>Irano, Natalia</creatorcontrib><creatorcontrib>Diaz, Iara Del Pilar Solar</creatorcontrib><creatorcontrib>Takada, Luciana</creatorcontrib><creatorcontrib>Hermisdorff, Isis da Costa</creatorcontrib><creatorcontrib>Carvalheiro, Roberto</creatorcontrib><creatorcontrib>Baldi, Fernando</creatorcontrib><creatorcontrib>de Oliveira, Henrique Nunes</creatorcontrib><creatorcontrib>Tonhati, Humberto</creatorcontrib><creatorcontrib>de Albuquerque, Lucia Galvão</creatorcontrib><title>Prediction of genomic breeding values for reproductive traits in Nellore heifers</title><title>Theriogenology</title><addtitle>Theriogenology</addtitle><description>The objective of this study was to assess the accuracy of genomic predictions for female reproductive traits in Nellore cattle. A total of 1853 genotyped cows and 305,348 SNPs were used for genomic selection analyses. GBLUP, BAYESCπ, and IBLASSO were applied to estimate SNP effects. The pseudo-phenotypes used as dependent variables were: observed phenotype (PHEN), adjusted phenotype (CPHEN), estimated breeding value (EBV), and deregressed estimated breeding value (DEBV). Predictive abilities were assessed by the average correlation between CPHEN and genomic estimated breeding value (GEBV) and by the average correlation between DEBV and GEBV in the validation population. Regression coefficients of pseudo-phenotypes on GEBV in the validation population were indicators of prediction bias in GEBV. BAYESCπ showed higher predictive ability to estimate SNP effects and GEBV for all traits.</description><subject>Genomic selection</subject><subject>Predicative ability</subject><subject>Reproductive efficiency</subject><subject>SNP</subject><issn>0093-691X</issn><issn>1879-3231</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LBDEMhosoun78BenBg5dZk3anMwNeRPwCUQ8K3kq3k65dZqfazi747-2yKnjzlJC8Sd48jJ0gjBFQnc3HwxtFH2bUhy7MPscCsM6tMeBki42wrppCConbbATQyEI1-LrH9lOaA4BUCnfZnsxJjaIasaenSK23gw89D46vly685dNIudzP-Mp0S0rchcgjvcfQLrN2RXyIxg-J-54_UNeFSPyNvKOYDtmOM12io-94wF6ur54vb4v7x5u7y4v7wspaDYWsVG2cNWSEQAXlFIwTZd1WbgIWVGVcW2LjSE5rh00rjKIKpS0nApwkqOUBO93szaY-ssVBL3yy2YvpKSyTFijy5zgpIUvPN1IbQ0qRnH6PfmHip0bQa6Z6rv8y1Wum625mmsePvy8tpwtqf4d_IGbB9UZA-d-Vp6iT9dTbTDCSHXQb_P8ufQHCR5Iz</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Costa, Raphael Bermal</creator><creator>Irano, Natalia</creator><creator>Diaz, Iara Del Pilar Solar</creator><creator>Takada, Luciana</creator><creator>Hermisdorff, Isis da Costa</creator><creator>Carvalheiro, Roberto</creator><creator>Baldi, Fernando</creator><creator>de Oliveira, Henrique Nunes</creator><creator>Tonhati, Humberto</creator><creator>de Albuquerque, Lucia Galvão</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20190201</creationdate><title>Prediction of genomic breeding values for reproductive traits in Nellore heifers</title><author>Costa, Raphael Bermal ; Irano, Natalia ; Diaz, Iara Del Pilar Solar ; Takada, Luciana ; Hermisdorff, Isis da Costa ; Carvalheiro, Roberto ; Baldi, Fernando ; de Oliveira, Henrique Nunes ; Tonhati, Humberto ; de Albuquerque, Lucia Galvão</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-3768afcaea221605b0af258d7f40c067afd519fe3b8f19d2a6e713c5420f3e083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Genomic selection</topic><topic>Predicative ability</topic><topic>Reproductive efficiency</topic><topic>SNP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Costa, Raphael Bermal</creatorcontrib><creatorcontrib>Irano, Natalia</creatorcontrib><creatorcontrib>Diaz, Iara Del Pilar Solar</creatorcontrib><creatorcontrib>Takada, Luciana</creatorcontrib><creatorcontrib>Hermisdorff, Isis da Costa</creatorcontrib><creatorcontrib>Carvalheiro, Roberto</creatorcontrib><creatorcontrib>Baldi, Fernando</creatorcontrib><creatorcontrib>de Oliveira, Henrique Nunes</creatorcontrib><creatorcontrib>Tonhati, Humberto</creatorcontrib><creatorcontrib>de Albuquerque, Lucia Galvão</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Theriogenology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Costa, Raphael Bermal</au><au>Irano, Natalia</au><au>Diaz, Iara Del Pilar Solar</au><au>Takada, Luciana</au><au>Hermisdorff, Isis da Costa</au><au>Carvalheiro, Roberto</au><au>Baldi, Fernando</au><au>de Oliveira, Henrique Nunes</au><au>Tonhati, Humberto</au><au>de Albuquerque, Lucia Galvão</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of genomic breeding values for reproductive traits in Nellore heifers</atitle><jtitle>Theriogenology</jtitle><addtitle>Theriogenology</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>125</volume><spage>12</spage><epage>17</epage><pages>12-17</pages><issn>0093-691X</issn><eissn>1879-3231</eissn><abstract>The objective of this study was to assess the accuracy of genomic predictions for female reproductive traits in Nellore cattle. A total of 1853 genotyped cows and 305,348 SNPs were used for genomic selection analyses. GBLUP, BAYESCπ, and IBLASSO were applied to estimate SNP effects. The pseudo-phenotypes used as dependent variables were: observed phenotype (PHEN), adjusted phenotype (CPHEN), estimated breeding value (EBV), and deregressed estimated breeding value (DEBV). Predictive abilities were assessed by the average correlation between CPHEN and genomic estimated breeding value (GEBV) and by the average correlation between DEBV and GEBV in the validation population. Regression coefficients of pseudo-phenotypes on GEBV in the validation population were indicators of prediction bias in GEBV. BAYESCπ showed higher predictive ability to estimate SNP effects and GEBV for all traits.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30368127</pmid><doi>10.1016/j.theriogenology.2018.10.014</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0093-691X
ispartof Theriogenology, 2019-02, Vol.125, p.12-17
issn 0093-691X
1879-3231
language eng
recordid cdi_proquest_miscellaneous_2126911450
source ScienceDirect Journals (5 years ago - present)
subjects Genomic selection
Predicative ability
Reproductive efficiency
SNP
title Prediction of genomic breeding values for reproductive traits in Nellore heifers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A52%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20genomic%20breeding%20values%20for%20reproductive%20traits%20in%20Nellore%20heifers&rft.jtitle=Theriogenology&rft.au=Costa,%20Raphael%20Bermal&rft.date=2019-02-01&rft.volume=125&rft.spage=12&rft.epage=17&rft.pages=12-17&rft.issn=0093-691X&rft.eissn=1879-3231&rft_id=info:doi/10.1016/j.theriogenology.2018.10.014&rft_dat=%3Cproquest_cross%3E2126911450%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126911450&rft_id=info:pmid/30368127&rft_els_id=S0093691X18309683&rfr_iscdi=true