Scalable Assembly of Crystalline Binary Nanocrystal Superparticles and Their Enhanced Magnetic and Electrochemical Properties

Self-assembled binary nanocrystal superlattices (BNSLs) represent an important class of solid-state materials with potentially designed properties. In pursuit of widening the range of applications for binary superlattice materials, it is desirable to develop scalable assembly methods that enable hig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2018-11, Vol.140 (44), p.15038-15047
Hauptverfasser: Yang, Yuchi, Wang, Biwei, Shen, Xiudi, Yao, Luyin, Wang, Lei, Chen, Xiao, Xie, Songhai, Li, Tongtao, Hu, Jianhua, Yang, Dong, Dong, Angang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15047
container_issue 44
container_start_page 15038
container_title Journal of the American Chemical Society
container_volume 140
creator Yang, Yuchi
Wang, Biwei
Shen, Xiudi
Yao, Luyin
Wang, Lei
Chen, Xiao
Xie, Songhai
Li, Tongtao
Hu, Jianhua
Yang, Dong
Dong, Angang
description Self-assembled binary nanocrystal superlattices (BNSLs) represent an important class of solid-state materials with potentially designed properties. In pursuit of widening the range of applications for binary superlattice materials, it is desirable to develop scalable assembly methods that enable high-quality BNSLs with tailored compositions, structures, and morphologies. Here, we report the gram-scale assembly of crystalline binary nanocrystal superparticles with high phase purity through an emulsion-based process. The structure of the resulting BNSL colloids can be tuned in a wide range (AB13, AlB2, MgZn2, NaCl, and CaCu5) by varying the size and/or number ratios of the two nanocrystal components. Access to large-scale, phase-pure BNSL colloids offers vast opportunities for investigating their physiochemical properties, as exemplified by AB13-type CoFe2O4–Fe3O4 binary superparticles. Our results show that CoFe2O4–Fe3O4 binary superparticles not only display enhanced magnetic coupling but also exhibit superior lithium-storage properties. The nonclosed-packed NC packing arrangements of AB13-type binary superparticles are found to play a key role in facilitating lithiation/delithiation kinetics and maintaining structural integrity during repeated cycling. Our work establishes the scalable assembly of high-quality BNSL colloids, which is beneficial for accelerating the exploration of multicomponent nanocrystal superlattices toward various applications.
doi_str_mv 10.1021/jacs.8b09779
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2126905688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126905688</sourcerecordid><originalsourceid>FETCH-LOGICAL-a324t-68cd5d79767bfb398668aafcfe796a288f1d1cbb618d81db08a8467ce44ec98c3</originalsourceid><addsrcrecordid>eNptkLtPwzAQxi0EouWxMSOPDATsPBxnhKo8pPKQgDk6OxeaynGKnQwd-N9xaYGF6XR3332f7kfICWcXnMX8cgHaX0jFijwvdsiYZzGLMh6LXTJmjMVRLkUyIgfeL0KbxpLvk1HCkqxgjI_J54sGA8ogvfIeW2VWtKvpxK18D8Y0Ful1Y8Gt6CPYTm_G9GVYoluC6xtt0FOwFX2dY-Po1M7BaqzoA7xbDOvv3dSg7l2n59g2IY0-uy7c9w36I7JXg_F4vK2H5O1m-jq5i2ZPt_eTq1kESZz2kZC6yqq8yEWuapUUUggJUOsa80JALGXNK66VElxWkleKSZCpyDWmKepC6uSQnG18l677GND3Zdt4jcaAxW7wZRx4FSwTUgbp-UaqXee9w7pcuqYNBErOyjXwcg283AIP8tOt86BarH7FP4T_otdXi25wNjz6v9cXFO-MJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126905688</pqid></control><display><type>article</type><title>Scalable Assembly of Crystalline Binary Nanocrystal Superparticles and Their Enhanced Magnetic and Electrochemical Properties</title><source>American Chemical Society Journals</source><creator>Yang, Yuchi ; Wang, Biwei ; Shen, Xiudi ; Yao, Luyin ; Wang, Lei ; Chen, Xiao ; Xie, Songhai ; Li, Tongtao ; Hu, Jianhua ; Yang, Dong ; Dong, Angang</creator><creatorcontrib>Yang, Yuchi ; Wang, Biwei ; Shen, Xiudi ; Yao, Luyin ; Wang, Lei ; Chen, Xiao ; Xie, Songhai ; Li, Tongtao ; Hu, Jianhua ; Yang, Dong ; Dong, Angang</creatorcontrib><description>Self-assembled binary nanocrystal superlattices (BNSLs) represent an important class of solid-state materials with potentially designed properties. In pursuit of widening the range of applications for binary superlattice materials, it is desirable to develop scalable assembly methods that enable high-quality BNSLs with tailored compositions, structures, and morphologies. Here, we report the gram-scale assembly of crystalline binary nanocrystal superparticles with high phase purity through an emulsion-based process. The structure of the resulting BNSL colloids can be tuned in a wide range (AB13, AlB2, MgZn2, NaCl, and CaCu5) by varying the size and/or number ratios of the two nanocrystal components. Access to large-scale, phase-pure BNSL colloids offers vast opportunities for investigating their physiochemical properties, as exemplified by AB13-type CoFe2O4–Fe3O4 binary superparticles. Our results show that CoFe2O4–Fe3O4 binary superparticles not only display enhanced magnetic coupling but also exhibit superior lithium-storage properties. The nonclosed-packed NC packing arrangements of AB13-type binary superparticles are found to play a key role in facilitating lithiation/delithiation kinetics and maintaining structural integrity during repeated cycling. Our work establishes the scalable assembly of high-quality BNSL colloids, which is beneficial for accelerating the exploration of multicomponent nanocrystal superlattices toward various applications.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.8b09779</identifier><identifier>PMID: 30359001</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2018-11, Vol.140 (44), p.15038-15047</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a324t-68cd5d79767bfb398668aafcfe796a288f1d1cbb618d81db08a8467ce44ec98c3</citedby><cites>FETCH-LOGICAL-a324t-68cd5d79767bfb398668aafcfe796a288f1d1cbb618d81db08a8467ce44ec98c3</cites><orcidid>0000-0002-9677-8778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.8b09779$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.8b09779$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30359001$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Yuchi</creatorcontrib><creatorcontrib>Wang, Biwei</creatorcontrib><creatorcontrib>Shen, Xiudi</creatorcontrib><creatorcontrib>Yao, Luyin</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Xie, Songhai</creatorcontrib><creatorcontrib>Li, Tongtao</creatorcontrib><creatorcontrib>Hu, Jianhua</creatorcontrib><creatorcontrib>Yang, Dong</creatorcontrib><creatorcontrib>Dong, Angang</creatorcontrib><title>Scalable Assembly of Crystalline Binary Nanocrystal Superparticles and Their Enhanced Magnetic and Electrochemical Properties</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Self-assembled binary nanocrystal superlattices (BNSLs) represent an important class of solid-state materials with potentially designed properties. In pursuit of widening the range of applications for binary superlattice materials, it is desirable to develop scalable assembly methods that enable high-quality BNSLs with tailored compositions, structures, and morphologies. Here, we report the gram-scale assembly of crystalline binary nanocrystal superparticles with high phase purity through an emulsion-based process. The structure of the resulting BNSL colloids can be tuned in a wide range (AB13, AlB2, MgZn2, NaCl, and CaCu5) by varying the size and/or number ratios of the two nanocrystal components. Access to large-scale, phase-pure BNSL colloids offers vast opportunities for investigating their physiochemical properties, as exemplified by AB13-type CoFe2O4–Fe3O4 binary superparticles. Our results show that CoFe2O4–Fe3O4 binary superparticles not only display enhanced magnetic coupling but also exhibit superior lithium-storage properties. The nonclosed-packed NC packing arrangements of AB13-type binary superparticles are found to play a key role in facilitating lithiation/delithiation kinetics and maintaining structural integrity during repeated cycling. Our work establishes the scalable assembly of high-quality BNSL colloids, which is beneficial for accelerating the exploration of multicomponent nanocrystal superlattices toward various applications.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNptkLtPwzAQxi0EouWxMSOPDATsPBxnhKo8pPKQgDk6OxeaynGKnQwd-N9xaYGF6XR3332f7kfICWcXnMX8cgHaX0jFijwvdsiYZzGLMh6LXTJmjMVRLkUyIgfeL0KbxpLvk1HCkqxgjI_J54sGA8ogvfIeW2VWtKvpxK18D8Y0Ful1Y8Gt6CPYTm_G9GVYoluC6xtt0FOwFX2dY-Po1M7BaqzoA7xbDOvv3dSg7l2n59g2IY0-uy7c9w36I7JXg_F4vK2H5O1m-jq5i2ZPt_eTq1kESZz2kZC6yqq8yEWuapUUUggJUOsa80JALGXNK66VElxWkleKSZCpyDWmKepC6uSQnG18l677GND3Zdt4jcaAxW7wZRx4FSwTUgbp-UaqXee9w7pcuqYNBErOyjXwcg283AIP8tOt86BarH7FP4T_otdXi25wNjz6v9cXFO-MJQ</recordid><startdate>20181107</startdate><enddate>20181107</enddate><creator>Yang, Yuchi</creator><creator>Wang, Biwei</creator><creator>Shen, Xiudi</creator><creator>Yao, Luyin</creator><creator>Wang, Lei</creator><creator>Chen, Xiao</creator><creator>Xie, Songhai</creator><creator>Li, Tongtao</creator><creator>Hu, Jianhua</creator><creator>Yang, Dong</creator><creator>Dong, Angang</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9677-8778</orcidid></search><sort><creationdate>20181107</creationdate><title>Scalable Assembly of Crystalline Binary Nanocrystal Superparticles and Their Enhanced Magnetic and Electrochemical Properties</title><author>Yang, Yuchi ; Wang, Biwei ; Shen, Xiudi ; Yao, Luyin ; Wang, Lei ; Chen, Xiao ; Xie, Songhai ; Li, Tongtao ; Hu, Jianhua ; Yang, Dong ; Dong, Angang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a324t-68cd5d79767bfb398668aafcfe796a288f1d1cbb618d81db08a8467ce44ec98c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yuchi</creatorcontrib><creatorcontrib>Wang, Biwei</creatorcontrib><creatorcontrib>Shen, Xiudi</creatorcontrib><creatorcontrib>Yao, Luyin</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Xie, Songhai</creatorcontrib><creatorcontrib>Li, Tongtao</creatorcontrib><creatorcontrib>Hu, Jianhua</creatorcontrib><creatorcontrib>Yang, Dong</creatorcontrib><creatorcontrib>Dong, Angang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yuchi</au><au>Wang, Biwei</au><au>Shen, Xiudi</au><au>Yao, Luyin</au><au>Wang, Lei</au><au>Chen, Xiao</au><au>Xie, Songhai</au><au>Li, Tongtao</au><au>Hu, Jianhua</au><au>Yang, Dong</au><au>Dong, Angang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable Assembly of Crystalline Binary Nanocrystal Superparticles and Their Enhanced Magnetic and Electrochemical Properties</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2018-11-07</date><risdate>2018</risdate><volume>140</volume><issue>44</issue><spage>15038</spage><epage>15047</epage><pages>15038-15047</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Self-assembled binary nanocrystal superlattices (BNSLs) represent an important class of solid-state materials with potentially designed properties. In pursuit of widening the range of applications for binary superlattice materials, it is desirable to develop scalable assembly methods that enable high-quality BNSLs with tailored compositions, structures, and morphologies. Here, we report the gram-scale assembly of crystalline binary nanocrystal superparticles with high phase purity through an emulsion-based process. The structure of the resulting BNSL colloids can be tuned in a wide range (AB13, AlB2, MgZn2, NaCl, and CaCu5) by varying the size and/or number ratios of the two nanocrystal components. Access to large-scale, phase-pure BNSL colloids offers vast opportunities for investigating their physiochemical properties, as exemplified by AB13-type CoFe2O4–Fe3O4 binary superparticles. Our results show that CoFe2O4–Fe3O4 binary superparticles not only display enhanced magnetic coupling but also exhibit superior lithium-storage properties. The nonclosed-packed NC packing arrangements of AB13-type binary superparticles are found to play a key role in facilitating lithiation/delithiation kinetics and maintaining structural integrity during repeated cycling. Our work establishes the scalable assembly of high-quality BNSL colloids, which is beneficial for accelerating the exploration of multicomponent nanocrystal superlattices toward various applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30359001</pmid><doi>10.1021/jacs.8b09779</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9677-8778</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2018-11, Vol.140 (44), p.15038-15047
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_2126905688
source American Chemical Society Journals
title Scalable Assembly of Crystalline Binary Nanocrystal Superparticles and Their Enhanced Magnetic and Electrochemical Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A48%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20Assembly%20of%20Crystalline%20Binary%20Nanocrystal%20Superparticles%20and%20Their%20Enhanced%20Magnetic%20and%20Electrochemical%20Properties&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Yang,%20Yuchi&rft.date=2018-11-07&rft.volume=140&rft.issue=44&rft.spage=15038&rft.epage=15047&rft.pages=15038-15047&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.8b09779&rft_dat=%3Cproquest_cross%3E2126905688%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126905688&rft_id=info:pmid/30359001&rfr_iscdi=true