Non-invasive electromechanical cell-based biosensors for improved investigation of 3D cardiac models

Cardiomyocytes (CM) placed on microelectrode array (MEA) were simultaneously probed with cantilever from atomic force microscope (AFM) system. This electric / nanomechanical combination in real time recorded beating force of the CMs cluster and the triggering electric events. Such "organ-on-a-c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2019-01, Vol.124-125, p.129-135
Hauptverfasser: Caluori, Guido, Pribyl, Jan, Pesl, Martin, Jelinkova, Sarka, Rotrekl, Vladimir, Skladal, Petr, Raiteri, Roberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 135
container_issue
container_start_page 129
container_title Biosensors & bioelectronics
container_volume 124-125
creator Caluori, Guido
Pribyl, Jan
Pesl, Martin
Jelinkova, Sarka
Rotrekl, Vladimir
Skladal, Petr
Raiteri, Roberto
description Cardiomyocytes (CM) placed on microelectrode array (MEA) were simultaneously probed with cantilever from atomic force microscope (AFM) system. This electric / nanomechanical combination in real time recorded beating force of the CMs cluster and the triggering electric events. Such "organ-on-a-chip" represents a tool for drug development and disease modeling. The human pluripotent stem cells included the WT embryonic line CCTL14 and the induced dystrophin deficient line reprogrammed from fibroblasts of a patient affected by Duchenne Muscular Dystrophy (DMD, complete loss of dystrophin expression). Both were differentiated to CMs and employed with the AFM/MEA platform for diseased CMs’ drug response testing and DMD characterization. The dependence of cardiac parameters on extracellular Ca2+ was studied. The differential evaluation explained the observed effects despite variability of biological samples. The β-adrenergic stimulation (isoproterenol) and antagonist trials (verapamil) addressed ionotropic and chronotropic cell line-dependent features. For the first time, a distinctive beating-force relation for DMD CMs was measured on the 3D cardiac in vitro model. [Display omitted] •Robust cellular biosensor based on cardiomyocytes cluster, cantilever as micromechanical transducer and microelectrode array.•Embryonic and patient-derived stem cells differentiated to cardiomyocytes functioning as biorecognition elements.•Real-time beating force and electric events following effects of heart drugs.•Characterization of cardiomyocytes representing patient affected by Duchenne Muscular Dystrophy.
doi_str_mv 10.1016/j.bios.2018.10.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2126904716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956566318308315</els_id><sourcerecordid>2126904716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-60e3bc2f2ca706356475e62234b820286e193c3be7446104ead8c0ac8c20e3d33</originalsourceid><addsrcrecordid>eNp9kD9PwzAUxC0EoqXwBRiQR5aUZztxUokF8V-qYIHZcuwXcJXExU4r8e1x1MLIZOl0d373I-ScwZwBk1eree18nHNgVRLmwNkBmbKqFFnORXFIprAoZFZIKSbkJMYVAJRsAcdkIkBIyYtySuyL7zPXb3V0W6TYohmC79B86t4Z3VKDbZvVOqKl42fYRx8ibXygrlsHv016SmMc3IcenO-pb6i4o0YH67ShnbfYxlNy1Og24tn-nZH3h_u326ds-fr4fHuzzEzO-ZBJQFEb3nCjS5CikHlZoORc5HXFgVcS2UIYUWOZ55JBjtpWBrSpDE9JK8SMXO5602Vfm3SU6lwcF-ge_SYqzrhcQF4ymax8ZzXBxxiwUevgOh2-FQM10lUrNQ5WI91RS3RT6GLfv6k7tH-RX5zJcL0zpNG4dRhUNA57g9aFRFZZ7_7r_wEFPYvh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126904716</pqid></control><display><type>article</type><title>Non-invasive electromechanical cell-based biosensors for improved investigation of 3D cardiac models</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Caluori, Guido ; Pribyl, Jan ; Pesl, Martin ; Jelinkova, Sarka ; Rotrekl, Vladimir ; Skladal, Petr ; Raiteri, Roberto</creator><creatorcontrib>Caluori, Guido ; Pribyl, Jan ; Pesl, Martin ; Jelinkova, Sarka ; Rotrekl, Vladimir ; Skladal, Petr ; Raiteri, Roberto</creatorcontrib><description>Cardiomyocytes (CM) placed on microelectrode array (MEA) were simultaneously probed with cantilever from atomic force microscope (AFM) system. This electric / nanomechanical combination in real time recorded beating force of the CMs cluster and the triggering electric events. Such "organ-on-a-chip" represents a tool for drug development and disease modeling. The human pluripotent stem cells included the WT embryonic line CCTL14 and the induced dystrophin deficient line reprogrammed from fibroblasts of a patient affected by Duchenne Muscular Dystrophy (DMD, complete loss of dystrophin expression). Both were differentiated to CMs and employed with the AFM/MEA platform for diseased CMs’ drug response testing and DMD characterization. The dependence of cardiac parameters on extracellular Ca2+ was studied. The differential evaluation explained the observed effects despite variability of biological samples. The β-adrenergic stimulation (isoproterenol) and antagonist trials (verapamil) addressed ionotropic and chronotropic cell line-dependent features. For the first time, a distinctive beating-force relation for DMD CMs was measured on the 3D cardiac in vitro model. [Display omitted] •Robust cellular biosensor based on cardiomyocytes cluster, cantilever as micromechanical transducer and microelectrode array.•Embryonic and patient-derived stem cells differentiated to cardiomyocytes functioning as biorecognition elements.•Real-time beating force and electric events following effects of heart drugs.•Characterization of cardiomyocytes representing patient affected by Duchenne Muscular Dystrophy.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2018.10.021</identifier><identifier>PMID: 30366257</identifier><language>eng</language><publisher>England: Elsevier B.V</publisher><subject>Atomic force microscopy ; Biosensing Techniques ; Cardiomyocytes ; Cell Differentiation - genetics ; Drug testing ; Dystrophin - genetics ; Excitation-contraction coupling ; Fibroblasts - drug effects ; Fibroblasts - ultrastructure ; Human pluripotent stem cells ; Humans ; Induced Pluripotent Stem Cells - metabolism ; Induced Pluripotent Stem Cells - ultrastructure ; Isoproterenol - pharmacology ; Microelectrode array ; Microelectrodes ; Microscopy, Atomic Force ; Muscular Dystrophy, Duchenne - physiopathology ; Myocardial Contraction - genetics ; Myocardial Contraction - physiology ; Myocytes, Cardiac - cytology ; Verapamil - pharmacology</subject><ispartof>Biosensors &amp; bioelectronics, 2019-01, Vol.124-125, p.129-135</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright © 2018 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-60e3bc2f2ca706356475e62234b820286e193c3be7446104ead8c0ac8c20e3d33</citedby><cites>FETCH-LOGICAL-c422t-60e3bc2f2ca706356475e62234b820286e193c3be7446104ead8c0ac8c20e3d33</cites><orcidid>0000-0003-2725-8768</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0956566318308315$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27902,27903,65308</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30366257$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Caluori, Guido</creatorcontrib><creatorcontrib>Pribyl, Jan</creatorcontrib><creatorcontrib>Pesl, Martin</creatorcontrib><creatorcontrib>Jelinkova, Sarka</creatorcontrib><creatorcontrib>Rotrekl, Vladimir</creatorcontrib><creatorcontrib>Skladal, Petr</creatorcontrib><creatorcontrib>Raiteri, Roberto</creatorcontrib><title>Non-invasive electromechanical cell-based biosensors for improved investigation of 3D cardiac models</title><title>Biosensors &amp; bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>Cardiomyocytes (CM) placed on microelectrode array (MEA) were simultaneously probed with cantilever from atomic force microscope (AFM) system. This electric / nanomechanical combination in real time recorded beating force of the CMs cluster and the triggering electric events. Such "organ-on-a-chip" represents a tool for drug development and disease modeling. The human pluripotent stem cells included the WT embryonic line CCTL14 and the induced dystrophin deficient line reprogrammed from fibroblasts of a patient affected by Duchenne Muscular Dystrophy (DMD, complete loss of dystrophin expression). Both were differentiated to CMs and employed with the AFM/MEA platform for diseased CMs’ drug response testing and DMD characterization. The dependence of cardiac parameters on extracellular Ca2+ was studied. The differential evaluation explained the observed effects despite variability of biological samples. The β-adrenergic stimulation (isoproterenol) and antagonist trials (verapamil) addressed ionotropic and chronotropic cell line-dependent features. For the first time, a distinctive beating-force relation for DMD CMs was measured on the 3D cardiac in vitro model. [Display omitted] •Robust cellular biosensor based on cardiomyocytes cluster, cantilever as micromechanical transducer and microelectrode array.•Embryonic and patient-derived stem cells differentiated to cardiomyocytes functioning as biorecognition elements.•Real-time beating force and electric events following effects of heart drugs.•Characterization of cardiomyocytes representing patient affected by Duchenne Muscular Dystrophy.</description><subject>Atomic force microscopy</subject><subject>Biosensing Techniques</subject><subject>Cardiomyocytes</subject><subject>Cell Differentiation - genetics</subject><subject>Drug testing</subject><subject>Dystrophin - genetics</subject><subject>Excitation-contraction coupling</subject><subject>Fibroblasts - drug effects</subject><subject>Fibroblasts - ultrastructure</subject><subject>Human pluripotent stem cells</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells - metabolism</subject><subject>Induced Pluripotent Stem Cells - ultrastructure</subject><subject>Isoproterenol - pharmacology</subject><subject>Microelectrode array</subject><subject>Microelectrodes</subject><subject>Microscopy, Atomic Force</subject><subject>Muscular Dystrophy, Duchenne - physiopathology</subject><subject>Myocardial Contraction - genetics</subject><subject>Myocardial Contraction - physiology</subject><subject>Myocytes, Cardiac - cytology</subject><subject>Verapamil - pharmacology</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD9PwzAUxC0EoqXwBRiQR5aUZztxUokF8V-qYIHZcuwXcJXExU4r8e1x1MLIZOl0d373I-ScwZwBk1eree18nHNgVRLmwNkBmbKqFFnORXFIprAoZFZIKSbkJMYVAJRsAcdkIkBIyYtySuyL7zPXb3V0W6TYohmC79B86t4Z3VKDbZvVOqKl42fYRx8ibXygrlsHv016SmMc3IcenO-pb6i4o0YH67ShnbfYxlNy1Og24tn-nZH3h_u326ds-fr4fHuzzEzO-ZBJQFEb3nCjS5CikHlZoORc5HXFgVcS2UIYUWOZ55JBjtpWBrSpDE9JK8SMXO5602Vfm3SU6lwcF-ge_SYqzrhcQF4ymax8ZzXBxxiwUevgOh2-FQM10lUrNQ5WI91RS3RT6GLfv6k7tH-RX5zJcL0zpNG4dRhUNA57g9aFRFZZ7_7r_wEFPYvh</recordid><startdate>20190115</startdate><enddate>20190115</enddate><creator>Caluori, Guido</creator><creator>Pribyl, Jan</creator><creator>Pesl, Martin</creator><creator>Jelinkova, Sarka</creator><creator>Rotrekl, Vladimir</creator><creator>Skladal, Petr</creator><creator>Raiteri, Roberto</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2725-8768</orcidid></search><sort><creationdate>20190115</creationdate><title>Non-invasive electromechanical cell-based biosensors for improved investigation of 3D cardiac models</title><author>Caluori, Guido ; Pribyl, Jan ; Pesl, Martin ; Jelinkova, Sarka ; Rotrekl, Vladimir ; Skladal, Petr ; Raiteri, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-60e3bc2f2ca706356475e62234b820286e193c3be7446104ead8c0ac8c20e3d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atomic force microscopy</topic><topic>Biosensing Techniques</topic><topic>Cardiomyocytes</topic><topic>Cell Differentiation - genetics</topic><topic>Drug testing</topic><topic>Dystrophin - genetics</topic><topic>Excitation-contraction coupling</topic><topic>Fibroblasts - drug effects</topic><topic>Fibroblasts - ultrastructure</topic><topic>Human pluripotent stem cells</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells - metabolism</topic><topic>Induced Pluripotent Stem Cells - ultrastructure</topic><topic>Isoproterenol - pharmacology</topic><topic>Microelectrode array</topic><topic>Microelectrodes</topic><topic>Microscopy, Atomic Force</topic><topic>Muscular Dystrophy, Duchenne - physiopathology</topic><topic>Myocardial Contraction - genetics</topic><topic>Myocardial Contraction - physiology</topic><topic>Myocytes, Cardiac - cytology</topic><topic>Verapamil - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caluori, Guido</creatorcontrib><creatorcontrib>Pribyl, Jan</creatorcontrib><creatorcontrib>Pesl, Martin</creatorcontrib><creatorcontrib>Jelinkova, Sarka</creatorcontrib><creatorcontrib>Rotrekl, Vladimir</creatorcontrib><creatorcontrib>Skladal, Petr</creatorcontrib><creatorcontrib>Raiteri, Roberto</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biosensors &amp; bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caluori, Guido</au><au>Pribyl, Jan</au><au>Pesl, Martin</au><au>Jelinkova, Sarka</au><au>Rotrekl, Vladimir</au><au>Skladal, Petr</au><au>Raiteri, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-invasive electromechanical cell-based biosensors for improved investigation of 3D cardiac models</atitle><jtitle>Biosensors &amp; bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2019-01-15</date><risdate>2019</risdate><volume>124-125</volume><spage>129</spage><epage>135</epage><pages>129-135</pages><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>Cardiomyocytes (CM) placed on microelectrode array (MEA) were simultaneously probed with cantilever from atomic force microscope (AFM) system. This electric / nanomechanical combination in real time recorded beating force of the CMs cluster and the triggering electric events. Such "organ-on-a-chip" represents a tool for drug development and disease modeling. The human pluripotent stem cells included the WT embryonic line CCTL14 and the induced dystrophin deficient line reprogrammed from fibroblasts of a patient affected by Duchenne Muscular Dystrophy (DMD, complete loss of dystrophin expression). Both were differentiated to CMs and employed with the AFM/MEA platform for diseased CMs’ drug response testing and DMD characterization. The dependence of cardiac parameters on extracellular Ca2+ was studied. The differential evaluation explained the observed effects despite variability of biological samples. The β-adrenergic stimulation (isoproterenol) and antagonist trials (verapamil) addressed ionotropic and chronotropic cell line-dependent features. For the first time, a distinctive beating-force relation for DMD CMs was measured on the 3D cardiac in vitro model. [Display omitted] •Robust cellular biosensor based on cardiomyocytes cluster, cantilever as micromechanical transducer and microelectrode array.•Embryonic and patient-derived stem cells differentiated to cardiomyocytes functioning as biorecognition elements.•Real-time beating force and electric events following effects of heart drugs.•Characterization of cardiomyocytes representing patient affected by Duchenne Muscular Dystrophy.</abstract><cop>England</cop><pub>Elsevier B.V</pub><pmid>30366257</pmid><doi>10.1016/j.bios.2018.10.021</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2725-8768</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0956-5663
ispartof Biosensors & bioelectronics, 2019-01, Vol.124-125, p.129-135
issn 0956-5663
1873-4235
language eng
recordid cdi_proquest_miscellaneous_2126904716
source MEDLINE; Elsevier ScienceDirect Journals
subjects Atomic force microscopy
Biosensing Techniques
Cardiomyocytes
Cell Differentiation - genetics
Drug testing
Dystrophin - genetics
Excitation-contraction coupling
Fibroblasts - drug effects
Fibroblasts - ultrastructure
Human pluripotent stem cells
Humans
Induced Pluripotent Stem Cells - metabolism
Induced Pluripotent Stem Cells - ultrastructure
Isoproterenol - pharmacology
Microelectrode array
Microelectrodes
Microscopy, Atomic Force
Muscular Dystrophy, Duchenne - physiopathology
Myocardial Contraction - genetics
Myocardial Contraction - physiology
Myocytes, Cardiac - cytology
Verapamil - pharmacology
title Non-invasive electromechanical cell-based biosensors for improved investigation of 3D cardiac models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A05%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-invasive%20electromechanical%20cell-based%20biosensors%20for%20improved%20investigation%20of%203D%20cardiac%20models&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Caluori,%20Guido&rft.date=2019-01-15&rft.volume=124-125&rft.spage=129&rft.epage=135&rft.pages=129-135&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2018.10.021&rft_dat=%3Cproquest_cross%3E2126904716%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126904716&rft_id=info:pmid/30366257&rft_els_id=S0956566318308315&rfr_iscdi=true