Non-invasive electromechanical cell-based biosensors for improved investigation of 3D cardiac models
Cardiomyocytes (CM) placed on microelectrode array (MEA) were simultaneously probed with cantilever from atomic force microscope (AFM) system. This electric / nanomechanical combination in real time recorded beating force of the CMs cluster and the triggering electric events. Such "organ-on-a-c...
Gespeichert in:
Veröffentlicht in: | Biosensors & bioelectronics 2019-01, Vol.124-125, p.129-135 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 135 |
---|---|
container_issue | |
container_start_page | 129 |
container_title | Biosensors & bioelectronics |
container_volume | 124-125 |
creator | Caluori, Guido Pribyl, Jan Pesl, Martin Jelinkova, Sarka Rotrekl, Vladimir Skladal, Petr Raiteri, Roberto |
description | Cardiomyocytes (CM) placed on microelectrode array (MEA) were simultaneously probed with cantilever from atomic force microscope (AFM) system. This electric / nanomechanical combination in real time recorded beating force of the CMs cluster and the triggering electric events. Such "organ-on-a-chip" represents a tool for drug development and disease modeling. The human pluripotent stem cells included the WT embryonic line CCTL14 and the induced dystrophin deficient line reprogrammed from fibroblasts of a patient affected by Duchenne Muscular Dystrophy (DMD, complete loss of dystrophin expression). Both were differentiated to CMs and employed with the AFM/MEA platform for diseased CMs’ drug response testing and DMD characterization. The dependence of cardiac parameters on extracellular Ca2+ was studied. The differential evaluation explained the observed effects despite variability of biological samples. The β-adrenergic stimulation (isoproterenol) and antagonist trials (verapamil) addressed ionotropic and chronotropic cell line-dependent features. For the first time, a distinctive beating-force relation for DMD CMs was measured on the 3D cardiac in vitro model.
[Display omitted]
•Robust cellular biosensor based on cardiomyocytes cluster, cantilever as micromechanical transducer and microelectrode array.•Embryonic and patient-derived stem cells differentiated to cardiomyocytes functioning as biorecognition elements.•Real-time beating force and electric events following effects of heart drugs.•Characterization of cardiomyocytes representing patient affected by Duchenne Muscular Dystrophy. |
doi_str_mv | 10.1016/j.bios.2018.10.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2126904716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956566318308315</els_id><sourcerecordid>2126904716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-60e3bc2f2ca706356475e62234b820286e193c3be7446104ead8c0ac8c20e3d33</originalsourceid><addsrcrecordid>eNp9kD9PwzAUxC0EoqXwBRiQR5aUZztxUokF8V-qYIHZcuwXcJXExU4r8e1x1MLIZOl0d373I-ScwZwBk1eree18nHNgVRLmwNkBmbKqFFnORXFIprAoZFZIKSbkJMYVAJRsAcdkIkBIyYtySuyL7zPXb3V0W6TYohmC79B86t4Z3VKDbZvVOqKl42fYRx8ibXygrlsHv016SmMc3IcenO-pb6i4o0YH67ShnbfYxlNy1Og24tn-nZH3h_u326ds-fr4fHuzzEzO-ZBJQFEb3nCjS5CikHlZoORc5HXFgVcS2UIYUWOZ55JBjtpWBrSpDE9JK8SMXO5602Vfm3SU6lwcF-ge_SYqzrhcQF4ymax8ZzXBxxiwUevgOh2-FQM10lUrNQ5WI91RS3RT6GLfv6k7tH-RX5zJcL0zpNG4dRhUNA57g9aFRFZZ7_7r_wEFPYvh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126904716</pqid></control><display><type>article</type><title>Non-invasive electromechanical cell-based biosensors for improved investigation of 3D cardiac models</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Caluori, Guido ; Pribyl, Jan ; Pesl, Martin ; Jelinkova, Sarka ; Rotrekl, Vladimir ; Skladal, Petr ; Raiteri, Roberto</creator><creatorcontrib>Caluori, Guido ; Pribyl, Jan ; Pesl, Martin ; Jelinkova, Sarka ; Rotrekl, Vladimir ; Skladal, Petr ; Raiteri, Roberto</creatorcontrib><description>Cardiomyocytes (CM) placed on microelectrode array (MEA) were simultaneously probed with cantilever from atomic force microscope (AFM) system. This electric / nanomechanical combination in real time recorded beating force of the CMs cluster and the triggering electric events. Such "organ-on-a-chip" represents a tool for drug development and disease modeling. The human pluripotent stem cells included the WT embryonic line CCTL14 and the induced dystrophin deficient line reprogrammed from fibroblasts of a patient affected by Duchenne Muscular Dystrophy (DMD, complete loss of dystrophin expression). Both were differentiated to CMs and employed with the AFM/MEA platform for diseased CMs’ drug response testing and DMD characterization. The dependence of cardiac parameters on extracellular Ca2+ was studied. The differential evaluation explained the observed effects despite variability of biological samples. The β-adrenergic stimulation (isoproterenol) and antagonist trials (verapamil) addressed ionotropic and chronotropic cell line-dependent features. For the first time, a distinctive beating-force relation for DMD CMs was measured on the 3D cardiac in vitro model.
[Display omitted]
•Robust cellular biosensor based on cardiomyocytes cluster, cantilever as micromechanical transducer and microelectrode array.•Embryonic and patient-derived stem cells differentiated to cardiomyocytes functioning as biorecognition elements.•Real-time beating force and electric events following effects of heart drugs.•Characterization of cardiomyocytes representing patient affected by Duchenne Muscular Dystrophy.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2018.10.021</identifier><identifier>PMID: 30366257</identifier><language>eng</language><publisher>England: Elsevier B.V</publisher><subject>Atomic force microscopy ; Biosensing Techniques ; Cardiomyocytes ; Cell Differentiation - genetics ; Drug testing ; Dystrophin - genetics ; Excitation-contraction coupling ; Fibroblasts - drug effects ; Fibroblasts - ultrastructure ; Human pluripotent stem cells ; Humans ; Induced Pluripotent Stem Cells - metabolism ; Induced Pluripotent Stem Cells - ultrastructure ; Isoproterenol - pharmacology ; Microelectrode array ; Microelectrodes ; Microscopy, Atomic Force ; Muscular Dystrophy, Duchenne - physiopathology ; Myocardial Contraction - genetics ; Myocardial Contraction - physiology ; Myocytes, Cardiac - cytology ; Verapamil - pharmacology</subject><ispartof>Biosensors & bioelectronics, 2019-01, Vol.124-125, p.129-135</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright © 2018 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-60e3bc2f2ca706356475e62234b820286e193c3be7446104ead8c0ac8c20e3d33</citedby><cites>FETCH-LOGICAL-c422t-60e3bc2f2ca706356475e62234b820286e193c3be7446104ead8c0ac8c20e3d33</cites><orcidid>0000-0003-2725-8768</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0956566318308315$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27902,27903,65308</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30366257$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Caluori, Guido</creatorcontrib><creatorcontrib>Pribyl, Jan</creatorcontrib><creatorcontrib>Pesl, Martin</creatorcontrib><creatorcontrib>Jelinkova, Sarka</creatorcontrib><creatorcontrib>Rotrekl, Vladimir</creatorcontrib><creatorcontrib>Skladal, Petr</creatorcontrib><creatorcontrib>Raiteri, Roberto</creatorcontrib><title>Non-invasive electromechanical cell-based biosensors for improved investigation of 3D cardiac models</title><title>Biosensors & bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>Cardiomyocytes (CM) placed on microelectrode array (MEA) were simultaneously probed with cantilever from atomic force microscope (AFM) system. This electric / nanomechanical combination in real time recorded beating force of the CMs cluster and the triggering electric events. Such "organ-on-a-chip" represents a tool for drug development and disease modeling. The human pluripotent stem cells included the WT embryonic line CCTL14 and the induced dystrophin deficient line reprogrammed from fibroblasts of a patient affected by Duchenne Muscular Dystrophy (DMD, complete loss of dystrophin expression). Both were differentiated to CMs and employed with the AFM/MEA platform for diseased CMs’ drug response testing and DMD characterization. The dependence of cardiac parameters on extracellular Ca2+ was studied. The differential evaluation explained the observed effects despite variability of biological samples. The β-adrenergic stimulation (isoproterenol) and antagonist trials (verapamil) addressed ionotropic and chronotropic cell line-dependent features. For the first time, a distinctive beating-force relation for DMD CMs was measured on the 3D cardiac in vitro model.
[Display omitted]
•Robust cellular biosensor based on cardiomyocytes cluster, cantilever as micromechanical transducer and microelectrode array.•Embryonic and patient-derived stem cells differentiated to cardiomyocytes functioning as biorecognition elements.•Real-time beating force and electric events following effects of heart drugs.•Characterization of cardiomyocytes representing patient affected by Duchenne Muscular Dystrophy.</description><subject>Atomic force microscopy</subject><subject>Biosensing Techniques</subject><subject>Cardiomyocytes</subject><subject>Cell Differentiation - genetics</subject><subject>Drug testing</subject><subject>Dystrophin - genetics</subject><subject>Excitation-contraction coupling</subject><subject>Fibroblasts - drug effects</subject><subject>Fibroblasts - ultrastructure</subject><subject>Human pluripotent stem cells</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells - metabolism</subject><subject>Induced Pluripotent Stem Cells - ultrastructure</subject><subject>Isoproterenol - pharmacology</subject><subject>Microelectrode array</subject><subject>Microelectrodes</subject><subject>Microscopy, Atomic Force</subject><subject>Muscular Dystrophy, Duchenne - physiopathology</subject><subject>Myocardial Contraction - genetics</subject><subject>Myocardial Contraction - physiology</subject><subject>Myocytes, Cardiac - cytology</subject><subject>Verapamil - pharmacology</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD9PwzAUxC0EoqXwBRiQR5aUZztxUokF8V-qYIHZcuwXcJXExU4r8e1x1MLIZOl0d373I-ScwZwBk1eree18nHNgVRLmwNkBmbKqFFnORXFIprAoZFZIKSbkJMYVAJRsAcdkIkBIyYtySuyL7zPXb3V0W6TYohmC79B86t4Z3VKDbZvVOqKl42fYRx8ibXygrlsHv016SmMc3IcenO-pb6i4o0YH67ShnbfYxlNy1Og24tn-nZH3h_u326ds-fr4fHuzzEzO-ZBJQFEb3nCjS5CikHlZoORc5HXFgVcS2UIYUWOZ55JBjtpWBrSpDE9JK8SMXO5602Vfm3SU6lwcF-ge_SYqzrhcQF4ymax8ZzXBxxiwUevgOh2-FQM10lUrNQ5WI91RS3RT6GLfv6k7tH-RX5zJcL0zpNG4dRhUNA57g9aFRFZZ7_7r_wEFPYvh</recordid><startdate>20190115</startdate><enddate>20190115</enddate><creator>Caluori, Guido</creator><creator>Pribyl, Jan</creator><creator>Pesl, Martin</creator><creator>Jelinkova, Sarka</creator><creator>Rotrekl, Vladimir</creator><creator>Skladal, Petr</creator><creator>Raiteri, Roberto</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2725-8768</orcidid></search><sort><creationdate>20190115</creationdate><title>Non-invasive electromechanical cell-based biosensors for improved investigation of 3D cardiac models</title><author>Caluori, Guido ; Pribyl, Jan ; Pesl, Martin ; Jelinkova, Sarka ; Rotrekl, Vladimir ; Skladal, Petr ; Raiteri, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-60e3bc2f2ca706356475e62234b820286e193c3be7446104ead8c0ac8c20e3d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atomic force microscopy</topic><topic>Biosensing Techniques</topic><topic>Cardiomyocytes</topic><topic>Cell Differentiation - genetics</topic><topic>Drug testing</topic><topic>Dystrophin - genetics</topic><topic>Excitation-contraction coupling</topic><topic>Fibroblasts - drug effects</topic><topic>Fibroblasts - ultrastructure</topic><topic>Human pluripotent stem cells</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells - metabolism</topic><topic>Induced Pluripotent Stem Cells - ultrastructure</topic><topic>Isoproterenol - pharmacology</topic><topic>Microelectrode array</topic><topic>Microelectrodes</topic><topic>Microscopy, Atomic Force</topic><topic>Muscular Dystrophy, Duchenne - physiopathology</topic><topic>Myocardial Contraction - genetics</topic><topic>Myocardial Contraction - physiology</topic><topic>Myocytes, Cardiac - cytology</topic><topic>Verapamil - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caluori, Guido</creatorcontrib><creatorcontrib>Pribyl, Jan</creatorcontrib><creatorcontrib>Pesl, Martin</creatorcontrib><creatorcontrib>Jelinkova, Sarka</creatorcontrib><creatorcontrib>Rotrekl, Vladimir</creatorcontrib><creatorcontrib>Skladal, Petr</creatorcontrib><creatorcontrib>Raiteri, Roberto</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biosensors & bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caluori, Guido</au><au>Pribyl, Jan</au><au>Pesl, Martin</au><au>Jelinkova, Sarka</au><au>Rotrekl, Vladimir</au><au>Skladal, Petr</au><au>Raiteri, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-invasive electromechanical cell-based biosensors for improved investigation of 3D cardiac models</atitle><jtitle>Biosensors & bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2019-01-15</date><risdate>2019</risdate><volume>124-125</volume><spage>129</spage><epage>135</epage><pages>129-135</pages><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>Cardiomyocytes (CM) placed on microelectrode array (MEA) were simultaneously probed with cantilever from atomic force microscope (AFM) system. This electric / nanomechanical combination in real time recorded beating force of the CMs cluster and the triggering electric events. Such "organ-on-a-chip" represents a tool for drug development and disease modeling. The human pluripotent stem cells included the WT embryonic line CCTL14 and the induced dystrophin deficient line reprogrammed from fibroblasts of a patient affected by Duchenne Muscular Dystrophy (DMD, complete loss of dystrophin expression). Both were differentiated to CMs and employed with the AFM/MEA platform for diseased CMs’ drug response testing and DMD characterization. The dependence of cardiac parameters on extracellular Ca2+ was studied. The differential evaluation explained the observed effects despite variability of biological samples. The β-adrenergic stimulation (isoproterenol) and antagonist trials (verapamil) addressed ionotropic and chronotropic cell line-dependent features. For the first time, a distinctive beating-force relation for DMD CMs was measured on the 3D cardiac in vitro model.
[Display omitted]
•Robust cellular biosensor based on cardiomyocytes cluster, cantilever as micromechanical transducer and microelectrode array.•Embryonic and patient-derived stem cells differentiated to cardiomyocytes functioning as biorecognition elements.•Real-time beating force and electric events following effects of heart drugs.•Characterization of cardiomyocytes representing patient affected by Duchenne Muscular Dystrophy.</abstract><cop>England</cop><pub>Elsevier B.V</pub><pmid>30366257</pmid><doi>10.1016/j.bios.2018.10.021</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2725-8768</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-5663 |
ispartof | Biosensors & bioelectronics, 2019-01, Vol.124-125, p.129-135 |
issn | 0956-5663 1873-4235 |
language | eng |
recordid | cdi_proquest_miscellaneous_2126904716 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Atomic force microscopy Biosensing Techniques Cardiomyocytes Cell Differentiation - genetics Drug testing Dystrophin - genetics Excitation-contraction coupling Fibroblasts - drug effects Fibroblasts - ultrastructure Human pluripotent stem cells Humans Induced Pluripotent Stem Cells - metabolism Induced Pluripotent Stem Cells - ultrastructure Isoproterenol - pharmacology Microelectrode array Microelectrodes Microscopy, Atomic Force Muscular Dystrophy, Duchenne - physiopathology Myocardial Contraction - genetics Myocardial Contraction - physiology Myocytes, Cardiac - cytology Verapamil - pharmacology |
title | Non-invasive electromechanical cell-based biosensors for improved investigation of 3D cardiac models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A05%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-invasive%20electromechanical%20cell-based%20biosensors%20for%20improved%20investigation%20of%203D%20cardiac%20models&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Caluori,%20Guido&rft.date=2019-01-15&rft.volume=124-125&rft.spage=129&rft.epage=135&rft.pages=129-135&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2018.10.021&rft_dat=%3Cproquest_cross%3E2126904716%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126904716&rft_id=info:pmid/30366257&rft_els_id=S0956566318308315&rfr_iscdi=true |