Fluorescent Sensor Array for Highly Efficient Microbial Lysate Identification through Competitive Interactions

Optical cross-reactive sensor arrays have recently been proven to be a powerful tool for high-throughput bioanalytes identification. Nevertheless, identification and classification of microbes, especially using microbial lysates as the analytes, still is a great challenge due to their complex compos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sensors 2018-11, Vol.3 (11), p.2218-2222
Hauptverfasser: Shen, Jianlei, Hu, Rong, Zhou, Taotao, Wang, Zhiming, Zhang, Yiru, Li, Shiwu, Gui, Chen, Jiang, Meijuan, Qin, Anjun, Tang, Ben Zhong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2222
container_issue 11
container_start_page 2218
container_title ACS sensors
container_volume 3
creator Shen, Jianlei
Hu, Rong
Zhou, Taotao
Wang, Zhiming
Zhang, Yiru
Li, Shiwu
Gui, Chen
Jiang, Meijuan
Qin, Anjun
Tang, Ben Zhong
description Optical cross-reactive sensor arrays have recently been proven to be a powerful tool for high-throughput bioanalytes identification. Nevertheless, identification and classification of microbes, especially using microbial lysates as the analytes, still is a great challenge due to their complex composition. Herein, we achieve this goal by using luminogens featuring aggregation-induced emission characteristics (AIEgens) and graphene oxide (GO) to construct a microbial lysate responsive fluorescent sensor array. The combination of AIEgen with GO not only reduces the background signal but also induces the competition interactions among AIEgen, microbial lysates, and GO, which highly improves the discrimination ability of the sensor array. As a result, six microbes, including two fungi, two Gram-positive bacteria, and two Gram-negative bacteria are precisely identified. Thus, this work provides a new way to design safer and simpler sensor arrays for the discrimination of complex analytes.
doi_str_mv 10.1021/acssensors.8b00650
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2126901389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126901389</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-a8a79a16f57d35972881f78e5b04aef5b6f3813601d37c92d8bf5bebc26ce90a3</originalsourceid><addsrcrecordid>eNp9kEtPAjEUhRujEYL8ARdmlm7APubRLgkBIcG4UNdNp9NCycwU247J_HuL4GPl6t7c-52TnAPALYJTBDF6ENJ71Xrr_JSWEOYZvABDTAo2ITlLL__sAzD2fg8hRFmOMwqvwYBAkkGWsiFol3VnnfJStSF5-TJMZs6JPtFxW5ntru6ThdZGmiPxZKSzpRF1sum9CCpZV_Fs4lsEY9sk7JzttrtkbpuDCiaYj4i0QTkhj39_A660qL0an-cIvC0Xr_PVZPP8uJ7PNhNBUhwmgoqCCZTrrKhIxgpMKdIFVVkJU6F0VuaaUERyiCpSSIYrWsajKiXOpWJQkBG4P_kenH3vlA-8MTFjXYtW2c5zjHDOICKURRSf0JjMe6c0PzjTCNdzBPmxav5bNT9XHUV3Z_-ubFT1I_kuNgLTExDFfG8718a4_zl-AqeCjwI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126901389</pqid></control><display><type>article</type><title>Fluorescent Sensor Array for Highly Efficient Microbial Lysate Identification through Competitive Interactions</title><source>ACS Publications</source><creator>Shen, Jianlei ; Hu, Rong ; Zhou, Taotao ; Wang, Zhiming ; Zhang, Yiru ; Li, Shiwu ; Gui, Chen ; Jiang, Meijuan ; Qin, Anjun ; Tang, Ben Zhong</creator><creatorcontrib>Shen, Jianlei ; Hu, Rong ; Zhou, Taotao ; Wang, Zhiming ; Zhang, Yiru ; Li, Shiwu ; Gui, Chen ; Jiang, Meijuan ; Qin, Anjun ; Tang, Ben Zhong</creatorcontrib><description>Optical cross-reactive sensor arrays have recently been proven to be a powerful tool for high-throughput bioanalytes identification. Nevertheless, identification and classification of microbes, especially using microbial lysates as the analytes, still is a great challenge due to their complex composition. Herein, we achieve this goal by using luminogens featuring aggregation-induced emission characteristics (AIEgens) and graphene oxide (GO) to construct a microbial lysate responsive fluorescent sensor array. The combination of AIEgen with GO not only reduces the background signal but also induces the competition interactions among AIEgen, microbial lysates, and GO, which highly improves the discrimination ability of the sensor array. As a result, six microbes, including two fungi, two Gram-positive bacteria, and two Gram-negative bacteria are precisely identified. Thus, this work provides a new way to design safer and simpler sensor arrays for the discrimination of complex analytes.</description><identifier>ISSN: 2379-3694</identifier><identifier>EISSN: 2379-3694</identifier><identifier>DOI: 10.1021/acssensors.8b00650</identifier><identifier>PMID: 30350949</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS sensors, 2018-11, Vol.3 (11), p.2218-2222</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-a8a79a16f57d35972881f78e5b04aef5b6f3813601d37c92d8bf5bebc26ce90a3</citedby><cites>FETCH-LOGICAL-a342t-a8a79a16f57d35972881f78e5b04aef5b6f3813601d37c92d8bf5bebc26ce90a3</cites><orcidid>0000-0002-7918-7538 ; 0000-0002-3047-3285 ; 0000-0002-0293-964X ; 0000-0001-7158-1808</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssensors.8b00650$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssensors.8b00650$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30350949$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Jianlei</creatorcontrib><creatorcontrib>Hu, Rong</creatorcontrib><creatorcontrib>Zhou, Taotao</creatorcontrib><creatorcontrib>Wang, Zhiming</creatorcontrib><creatorcontrib>Zhang, Yiru</creatorcontrib><creatorcontrib>Li, Shiwu</creatorcontrib><creatorcontrib>Gui, Chen</creatorcontrib><creatorcontrib>Jiang, Meijuan</creatorcontrib><creatorcontrib>Qin, Anjun</creatorcontrib><creatorcontrib>Tang, Ben Zhong</creatorcontrib><title>Fluorescent Sensor Array for Highly Efficient Microbial Lysate Identification through Competitive Interactions</title><title>ACS sensors</title><addtitle>ACS Sens</addtitle><description>Optical cross-reactive sensor arrays have recently been proven to be a powerful tool for high-throughput bioanalytes identification. Nevertheless, identification and classification of microbes, especially using microbial lysates as the analytes, still is a great challenge due to their complex composition. Herein, we achieve this goal by using luminogens featuring aggregation-induced emission characteristics (AIEgens) and graphene oxide (GO) to construct a microbial lysate responsive fluorescent sensor array. The combination of AIEgen with GO not only reduces the background signal but also induces the competition interactions among AIEgen, microbial lysates, and GO, which highly improves the discrimination ability of the sensor array. As a result, six microbes, including two fungi, two Gram-positive bacteria, and two Gram-negative bacteria are precisely identified. Thus, this work provides a new way to design safer and simpler sensor arrays for the discrimination of complex analytes.</description><issn>2379-3694</issn><issn>2379-3694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPAjEUhRujEYL8ARdmlm7APubRLgkBIcG4UNdNp9NCycwU247J_HuL4GPl6t7c-52TnAPALYJTBDF6ENJ71Xrr_JSWEOYZvABDTAo2ITlLL__sAzD2fg8hRFmOMwqvwYBAkkGWsiFol3VnnfJStSF5-TJMZs6JPtFxW5ntru6ThdZGmiPxZKSzpRF1sum9CCpZV_Fs4lsEY9sk7JzttrtkbpuDCiaYj4i0QTkhj39_A660qL0an-cIvC0Xr_PVZPP8uJ7PNhNBUhwmgoqCCZTrrKhIxgpMKdIFVVkJU6F0VuaaUERyiCpSSIYrWsajKiXOpWJQkBG4P_kenH3vlA-8MTFjXYtW2c5zjHDOICKURRSf0JjMe6c0PzjTCNdzBPmxav5bNT9XHUV3Z_-ubFT1I_kuNgLTExDFfG8718a4_zl-AqeCjwI</recordid><startdate>20181126</startdate><enddate>20181126</enddate><creator>Shen, Jianlei</creator><creator>Hu, Rong</creator><creator>Zhou, Taotao</creator><creator>Wang, Zhiming</creator><creator>Zhang, Yiru</creator><creator>Li, Shiwu</creator><creator>Gui, Chen</creator><creator>Jiang, Meijuan</creator><creator>Qin, Anjun</creator><creator>Tang, Ben Zhong</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7918-7538</orcidid><orcidid>https://orcid.org/0000-0002-3047-3285</orcidid><orcidid>https://orcid.org/0000-0002-0293-964X</orcidid><orcidid>https://orcid.org/0000-0001-7158-1808</orcidid></search><sort><creationdate>20181126</creationdate><title>Fluorescent Sensor Array for Highly Efficient Microbial Lysate Identification through Competitive Interactions</title><author>Shen, Jianlei ; Hu, Rong ; Zhou, Taotao ; Wang, Zhiming ; Zhang, Yiru ; Li, Shiwu ; Gui, Chen ; Jiang, Meijuan ; Qin, Anjun ; Tang, Ben Zhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-a8a79a16f57d35972881f78e5b04aef5b6f3813601d37c92d8bf5bebc26ce90a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Jianlei</creatorcontrib><creatorcontrib>Hu, Rong</creatorcontrib><creatorcontrib>Zhou, Taotao</creatorcontrib><creatorcontrib>Wang, Zhiming</creatorcontrib><creatorcontrib>Zhang, Yiru</creatorcontrib><creatorcontrib>Li, Shiwu</creatorcontrib><creatorcontrib>Gui, Chen</creatorcontrib><creatorcontrib>Jiang, Meijuan</creatorcontrib><creatorcontrib>Qin, Anjun</creatorcontrib><creatorcontrib>Tang, Ben Zhong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Jianlei</au><au>Hu, Rong</au><au>Zhou, Taotao</au><au>Wang, Zhiming</au><au>Zhang, Yiru</au><au>Li, Shiwu</au><au>Gui, Chen</au><au>Jiang, Meijuan</au><au>Qin, Anjun</au><au>Tang, Ben Zhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluorescent Sensor Array for Highly Efficient Microbial Lysate Identification through Competitive Interactions</atitle><jtitle>ACS sensors</jtitle><addtitle>ACS Sens</addtitle><date>2018-11-26</date><risdate>2018</risdate><volume>3</volume><issue>11</issue><spage>2218</spage><epage>2222</epage><pages>2218-2222</pages><issn>2379-3694</issn><eissn>2379-3694</eissn><abstract>Optical cross-reactive sensor arrays have recently been proven to be a powerful tool for high-throughput bioanalytes identification. Nevertheless, identification and classification of microbes, especially using microbial lysates as the analytes, still is a great challenge due to their complex composition. Herein, we achieve this goal by using luminogens featuring aggregation-induced emission characteristics (AIEgens) and graphene oxide (GO) to construct a microbial lysate responsive fluorescent sensor array. The combination of AIEgen with GO not only reduces the background signal but also induces the competition interactions among AIEgen, microbial lysates, and GO, which highly improves the discrimination ability of the sensor array. As a result, six microbes, including two fungi, two Gram-positive bacteria, and two Gram-negative bacteria are precisely identified. Thus, this work provides a new way to design safer and simpler sensor arrays for the discrimination of complex analytes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30350949</pmid><doi>10.1021/acssensors.8b00650</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7918-7538</orcidid><orcidid>https://orcid.org/0000-0002-3047-3285</orcidid><orcidid>https://orcid.org/0000-0002-0293-964X</orcidid><orcidid>https://orcid.org/0000-0001-7158-1808</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2379-3694
ispartof ACS sensors, 2018-11, Vol.3 (11), p.2218-2222
issn 2379-3694
2379-3694
language eng
recordid cdi_proquest_miscellaneous_2126901389
source ACS Publications
title Fluorescent Sensor Array for Highly Efficient Microbial Lysate Identification through Competitive Interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A11%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluorescent%20Sensor%20Array%20for%20Highly%20Efficient%20Microbial%20Lysate%20Identification%20through%20Competitive%20Interactions&rft.jtitle=ACS%20sensors&rft.au=Shen,%20Jianlei&rft.date=2018-11-26&rft.volume=3&rft.issue=11&rft.spage=2218&rft.epage=2222&rft.pages=2218-2222&rft.issn=2379-3694&rft.eissn=2379-3694&rft_id=info:doi/10.1021/acssensors.8b00650&rft_dat=%3Cproquest_cross%3E2126901389%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126901389&rft_id=info:pmid/30350949&rfr_iscdi=true