Eigenfunction-Based Multitask Learning in a Reproducing Kernel Hilbert Space
Multitask learning aims to improve the performance on related tasks by exploring the interdependence among them. Existing multitask learning methods explore the relatedness among tasks on the basis of the input features and the model parameters. In this paper, we focus on nonparametric multitask lea...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2019-06, Vol.30 (6), p.1818-1830 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1830 |
---|---|
container_issue | 6 |
container_start_page | 1818 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 30 |
creator | Tian, Xinmei Li, Ya Liu, Tongliang Wang, Xinchao Tao, Dacheng |
description | Multitask learning aims to improve the performance on related tasks by exploring the interdependence among them. Existing multitask learning methods explore the relatedness among tasks on the basis of the input features and the model parameters. In this paper, we focus on nonparametric multitask learning and propose to measure task relatedness from a novel perspective in a reproducing kernel Hilbert space (RKHS). Past works have shown that the objective function for a given task can be approximated using the top eigenvalues and corresponding eigenfunctions of a predefined integral operator on an RKHS. In our method, we formulate our objective for multitask learning as a linear combination of two sets of eigenfunctions, common eigenfunctions shared by different tasks and unique eigenfunctions in individual tasks, such that the eigenfunctions for one task can provide additional information on another and help to improve its performance. We present both theoretical and empirical validations of our proposed approach. The theoretical analysis demonstrates that our learning algorithm is uniformly argument stable and that the convergence rate of the generalization upper bound can be improved by learning multiple tasks. Experiments on several benchmark multitask learning data sets show that our method yields promising results. |
doi_str_mv | 10.1109/TNNLS.2018.2873649 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2126900540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8513983</ieee_id><sourcerecordid>2230723001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-e5a7976f7d1f4dd3705306b67643bff6154eb42c6d218e83cd08077d2918e9ea3</originalsourceid><addsrcrecordid>eNpdkFFP2zAQgC00BKjwB5g0RdrLXlLOdmI7jxvqVrQAEgWJN8uJL8gsdYqdPPDv59KuD7N0sn333en0EXJJYU4pVFePd3f1as6AqjlTkouiOiJnjAqWM67Up8NbPp-SixhfIR0BZeJOyCkHLimv4IzUC_eCvpt8O7rB5z9MRJvdTv3oRhP_ZDWa4J1_yZzPTPaAmzDYqd0mfmPw2GdL1zcYxmy1MS2ek-PO9BEv9veMPP1cPF4v8_r-18319zpveUnHHEsjKyk6aWlXWMsllBxEI6QoeNN1gpYFNgVrhWVUoeKtBQVSWlalb4WGz8i33dy0ztuEcdRrF1vse-NxmKJmlIkKoCwgoV__Q1-HKfi0nWaMg0wBNFFsR7VhiDFgpzfBrU141xT0Vrf-0K23uvVed2r6sh89NWu0h5Z_chPweQc4RDyUVZmKivO_AUqB_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2230723001</pqid></control><display><type>article</type><title>Eigenfunction-Based Multitask Learning in a Reproducing Kernel Hilbert Space</title><source>IEEE Electronic Library (IEL)</source><creator>Tian, Xinmei ; Li, Ya ; Liu, Tongliang ; Wang, Xinchao ; Tao, Dacheng</creator><creatorcontrib>Tian, Xinmei ; Li, Ya ; Liu, Tongliang ; Wang, Xinchao ; Tao, Dacheng</creatorcontrib><description>Multitask learning aims to improve the performance on related tasks by exploring the interdependence among them. Existing multitask learning methods explore the relatedness among tasks on the basis of the input features and the model parameters. In this paper, we focus on nonparametric multitask learning and propose to measure task relatedness from a novel perspective in a reproducing kernel Hilbert space (RKHS). Past works have shown that the objective function for a given task can be approximated using the top eigenvalues and corresponding eigenfunctions of a predefined integral operator on an RKHS. In our method, we formulate our objective for multitask learning as a linear combination of two sets of eigenfunctions, common eigenfunctions shared by different tasks and unique eigenfunctions in individual tasks, such that the eigenfunctions for one task can provide additional information on another and help to improve its performance. We present both theoretical and empirical validations of our proposed approach. The theoretical analysis demonstrates that our learning algorithm is uniformly argument stable and that the convergence rate of the generalization upper bound can be improved by learning multiple tasks. Experiments on several benchmark multitask learning data sets show that our method yields promising results.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2018.2873649</identifier><identifier>PMID: 30371390</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Eigenfunction-based learning ; Eigenvalues ; Eigenvalues and eigenfunctions ; Eigenvectors ; Empirical analysis ; Hilbert space ; Kernel ; Kernels ; Learning ; Learning systems ; Linear programming ; Machine learning ; Measurement ; multitask learning ; Objective function ; Operators (mathematics) ; Optimization ; Performance enhancement ; regression ; Task analysis ; task relatedness ; Theoretical analysis ; Upper bounds</subject><ispartof>IEEE transaction on neural networks and learning systems, 2019-06, Vol.30 (6), p.1818-1830</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-e5a7976f7d1f4dd3705306b67643bff6154eb42c6d218e83cd08077d2918e9ea3</citedby><cites>FETCH-LOGICAL-c351t-e5a7976f7d1f4dd3705306b67643bff6154eb42c6d218e83cd08077d2918e9ea3</cites><orcidid>0000-0001-7225-5449 ; 0000-0002-9640-6472 ; 0000-0002-5952-8753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8513983$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8513983$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30371390$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tian, Xinmei</creatorcontrib><creatorcontrib>Li, Ya</creatorcontrib><creatorcontrib>Liu, Tongliang</creatorcontrib><creatorcontrib>Wang, Xinchao</creatorcontrib><creatorcontrib>Tao, Dacheng</creatorcontrib><title>Eigenfunction-Based Multitask Learning in a Reproducing Kernel Hilbert Space</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Multitask learning aims to improve the performance on related tasks by exploring the interdependence among them. Existing multitask learning methods explore the relatedness among tasks on the basis of the input features and the model parameters. In this paper, we focus on nonparametric multitask learning and propose to measure task relatedness from a novel perspective in a reproducing kernel Hilbert space (RKHS). Past works have shown that the objective function for a given task can be approximated using the top eigenvalues and corresponding eigenfunctions of a predefined integral operator on an RKHS. In our method, we formulate our objective for multitask learning as a linear combination of two sets of eigenfunctions, common eigenfunctions shared by different tasks and unique eigenfunctions in individual tasks, such that the eigenfunctions for one task can provide additional information on another and help to improve its performance. We present both theoretical and empirical validations of our proposed approach. The theoretical analysis demonstrates that our learning algorithm is uniformly argument stable and that the convergence rate of the generalization upper bound can be improved by learning multiple tasks. Experiments on several benchmark multitask learning data sets show that our method yields promising results.</description><subject>Algorithms</subject><subject>Eigenfunction-based learning</subject><subject>Eigenvalues</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Eigenvectors</subject><subject>Empirical analysis</subject><subject>Hilbert space</subject><subject>Kernel</subject><subject>Kernels</subject><subject>Learning</subject><subject>Learning systems</subject><subject>Linear programming</subject><subject>Machine learning</subject><subject>Measurement</subject><subject>multitask learning</subject><subject>Objective function</subject><subject>Operators (mathematics)</subject><subject>Optimization</subject><subject>Performance enhancement</subject><subject>regression</subject><subject>Task analysis</subject><subject>task relatedness</subject><subject>Theoretical analysis</subject><subject>Upper bounds</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkFFP2zAQgC00BKjwB5g0RdrLXlLOdmI7jxvqVrQAEgWJN8uJL8gsdYqdPPDv59KuD7N0sn333en0EXJJYU4pVFePd3f1as6AqjlTkouiOiJnjAqWM67Up8NbPp-SixhfIR0BZeJOyCkHLimv4IzUC_eCvpt8O7rB5z9MRJvdTv3oRhP_ZDWa4J1_yZzPTPaAmzDYqd0mfmPw2GdL1zcYxmy1MS2ek-PO9BEv9veMPP1cPF4v8_r-18319zpveUnHHEsjKyk6aWlXWMsllBxEI6QoeNN1gpYFNgVrhWVUoeKtBQVSWlalb4WGz8i33dy0ztuEcdRrF1vse-NxmKJmlIkKoCwgoV__Q1-HKfi0nWaMg0wBNFFsR7VhiDFgpzfBrU141xT0Vrf-0K23uvVed2r6sh89NWu0h5Z_chPweQc4RDyUVZmKivO_AUqB_g</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Tian, Xinmei</creator><creator>Li, Ya</creator><creator>Liu, Tongliang</creator><creator>Wang, Xinchao</creator><creator>Tao, Dacheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7225-5449</orcidid><orcidid>https://orcid.org/0000-0002-9640-6472</orcidid><orcidid>https://orcid.org/0000-0002-5952-8753</orcidid></search><sort><creationdate>20190601</creationdate><title>Eigenfunction-Based Multitask Learning in a Reproducing Kernel Hilbert Space</title><author>Tian, Xinmei ; Li, Ya ; Liu, Tongliang ; Wang, Xinchao ; Tao, Dacheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-e5a7976f7d1f4dd3705306b67643bff6154eb42c6d218e83cd08077d2918e9ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Eigenfunction-based learning</topic><topic>Eigenvalues</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Eigenvectors</topic><topic>Empirical analysis</topic><topic>Hilbert space</topic><topic>Kernel</topic><topic>Kernels</topic><topic>Learning</topic><topic>Learning systems</topic><topic>Linear programming</topic><topic>Machine learning</topic><topic>Measurement</topic><topic>multitask learning</topic><topic>Objective function</topic><topic>Operators (mathematics)</topic><topic>Optimization</topic><topic>Performance enhancement</topic><topic>regression</topic><topic>Task analysis</topic><topic>task relatedness</topic><topic>Theoretical analysis</topic><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Tian, Xinmei</creatorcontrib><creatorcontrib>Li, Ya</creatorcontrib><creatorcontrib>Liu, Tongliang</creatorcontrib><creatorcontrib>Wang, Xinchao</creatorcontrib><creatorcontrib>Tao, Dacheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tian, Xinmei</au><au>Li, Ya</au><au>Liu, Tongliang</au><au>Wang, Xinchao</au><au>Tao, Dacheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eigenfunction-Based Multitask Learning in a Reproducing Kernel Hilbert Space</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>30</volume><issue>6</issue><spage>1818</spage><epage>1830</epage><pages>1818-1830</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Multitask learning aims to improve the performance on related tasks by exploring the interdependence among them. Existing multitask learning methods explore the relatedness among tasks on the basis of the input features and the model parameters. In this paper, we focus on nonparametric multitask learning and propose to measure task relatedness from a novel perspective in a reproducing kernel Hilbert space (RKHS). Past works have shown that the objective function for a given task can be approximated using the top eigenvalues and corresponding eigenfunctions of a predefined integral operator on an RKHS. In our method, we formulate our objective for multitask learning as a linear combination of two sets of eigenfunctions, common eigenfunctions shared by different tasks and unique eigenfunctions in individual tasks, such that the eigenfunctions for one task can provide additional information on another and help to improve its performance. We present both theoretical and empirical validations of our proposed approach. The theoretical analysis demonstrates that our learning algorithm is uniformly argument stable and that the convergence rate of the generalization upper bound can be improved by learning multiple tasks. Experiments on several benchmark multitask learning data sets show that our method yields promising results.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30371390</pmid><doi>10.1109/TNNLS.2018.2873649</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7225-5449</orcidid><orcidid>https://orcid.org/0000-0002-9640-6472</orcidid><orcidid>https://orcid.org/0000-0002-5952-8753</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2019-06, Vol.30 (6), p.1818-1830 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_proquest_miscellaneous_2126900540 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Eigenfunction-based learning Eigenvalues Eigenvalues and eigenfunctions Eigenvectors Empirical analysis Hilbert space Kernel Kernels Learning Learning systems Linear programming Machine learning Measurement multitask learning Objective function Operators (mathematics) Optimization Performance enhancement regression Task analysis task relatedness Theoretical analysis Upper bounds |
title | Eigenfunction-Based Multitask Learning in a Reproducing Kernel Hilbert Space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A59%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eigenfunction-Based%20Multitask%20Learning%20in%20a%20Reproducing%20Kernel%20Hilbert%20Space&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Tian,%20Xinmei&rft.date=2019-06-01&rft.volume=30&rft.issue=6&rft.spage=1818&rft.epage=1830&rft.pages=1818-1830&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2018.2873649&rft_dat=%3Cproquest_RIE%3E2230723001%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2230723001&rft_id=info:pmid/30371390&rft_ieee_id=8513983&rfr_iscdi=true |