Eigenfunction-Based Multitask Learning in a Reproducing Kernel Hilbert Space

Multitask learning aims to improve the performance on related tasks by exploring the interdependence among them. Existing multitask learning methods explore the relatedness among tasks on the basis of the input features and the model parameters. In this paper, we focus on nonparametric multitask lea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2019-06, Vol.30 (6), p.1818-1830
Hauptverfasser: Tian, Xinmei, Li, Ya, Liu, Tongliang, Wang, Xinchao, Tao, Dacheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1830
container_issue 6
container_start_page 1818
container_title IEEE transaction on neural networks and learning systems
container_volume 30
creator Tian, Xinmei
Li, Ya
Liu, Tongliang
Wang, Xinchao
Tao, Dacheng
description Multitask learning aims to improve the performance on related tasks by exploring the interdependence among them. Existing multitask learning methods explore the relatedness among tasks on the basis of the input features and the model parameters. In this paper, we focus on nonparametric multitask learning and propose to measure task relatedness from a novel perspective in a reproducing kernel Hilbert space (RKHS). Past works have shown that the objective function for a given task can be approximated using the top eigenvalues and corresponding eigenfunctions of a predefined integral operator on an RKHS. In our method, we formulate our objective for multitask learning as a linear combination of two sets of eigenfunctions, common eigenfunctions shared by different tasks and unique eigenfunctions in individual tasks, such that the eigenfunctions for one task can provide additional information on another and help to improve its performance. We present both theoretical and empirical validations of our proposed approach. The theoretical analysis demonstrates that our learning algorithm is uniformly argument stable and that the convergence rate of the generalization upper bound can be improved by learning multiple tasks. Experiments on several benchmark multitask learning data sets show that our method yields promising results.
doi_str_mv 10.1109/TNNLS.2018.2873649
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2126900540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8513983</ieee_id><sourcerecordid>2230723001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-e5a7976f7d1f4dd3705306b67643bff6154eb42c6d218e83cd08077d2918e9ea3</originalsourceid><addsrcrecordid>eNpdkFFP2zAQgC00BKjwB5g0RdrLXlLOdmI7jxvqVrQAEgWJN8uJL8gsdYqdPPDv59KuD7N0sn333en0EXJJYU4pVFePd3f1as6AqjlTkouiOiJnjAqWM67Up8NbPp-SixhfIR0BZeJOyCkHLimv4IzUC_eCvpt8O7rB5z9MRJvdTv3oRhP_ZDWa4J1_yZzPTPaAmzDYqd0mfmPw2GdL1zcYxmy1MS2ek-PO9BEv9veMPP1cPF4v8_r-18319zpveUnHHEsjKyk6aWlXWMsllBxEI6QoeNN1gpYFNgVrhWVUoeKtBQVSWlalb4WGz8i33dy0ztuEcdRrF1vse-NxmKJmlIkKoCwgoV__Q1-HKfi0nWaMg0wBNFFsR7VhiDFgpzfBrU141xT0Vrf-0K23uvVed2r6sh89NWu0h5Z_chPweQc4RDyUVZmKivO_AUqB_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2230723001</pqid></control><display><type>article</type><title>Eigenfunction-Based Multitask Learning in a Reproducing Kernel Hilbert Space</title><source>IEEE Electronic Library (IEL)</source><creator>Tian, Xinmei ; Li, Ya ; Liu, Tongliang ; Wang, Xinchao ; Tao, Dacheng</creator><creatorcontrib>Tian, Xinmei ; Li, Ya ; Liu, Tongliang ; Wang, Xinchao ; Tao, Dacheng</creatorcontrib><description>Multitask learning aims to improve the performance on related tasks by exploring the interdependence among them. Existing multitask learning methods explore the relatedness among tasks on the basis of the input features and the model parameters. In this paper, we focus on nonparametric multitask learning and propose to measure task relatedness from a novel perspective in a reproducing kernel Hilbert space (RKHS). Past works have shown that the objective function for a given task can be approximated using the top eigenvalues and corresponding eigenfunctions of a predefined integral operator on an RKHS. In our method, we formulate our objective for multitask learning as a linear combination of two sets of eigenfunctions, common eigenfunctions shared by different tasks and unique eigenfunctions in individual tasks, such that the eigenfunctions for one task can provide additional information on another and help to improve its performance. We present both theoretical and empirical validations of our proposed approach. The theoretical analysis demonstrates that our learning algorithm is uniformly argument stable and that the convergence rate of the generalization upper bound can be improved by learning multiple tasks. Experiments on several benchmark multitask learning data sets show that our method yields promising results.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2018.2873649</identifier><identifier>PMID: 30371390</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Eigenfunction-based learning ; Eigenvalues ; Eigenvalues and eigenfunctions ; Eigenvectors ; Empirical analysis ; Hilbert space ; Kernel ; Kernels ; Learning ; Learning systems ; Linear programming ; Machine learning ; Measurement ; multitask learning ; Objective function ; Operators (mathematics) ; Optimization ; Performance enhancement ; regression ; Task analysis ; task relatedness ; Theoretical analysis ; Upper bounds</subject><ispartof>IEEE transaction on neural networks and learning systems, 2019-06, Vol.30 (6), p.1818-1830</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-e5a7976f7d1f4dd3705306b67643bff6154eb42c6d218e83cd08077d2918e9ea3</citedby><cites>FETCH-LOGICAL-c351t-e5a7976f7d1f4dd3705306b67643bff6154eb42c6d218e83cd08077d2918e9ea3</cites><orcidid>0000-0001-7225-5449 ; 0000-0002-9640-6472 ; 0000-0002-5952-8753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8513983$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8513983$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30371390$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tian, Xinmei</creatorcontrib><creatorcontrib>Li, Ya</creatorcontrib><creatorcontrib>Liu, Tongliang</creatorcontrib><creatorcontrib>Wang, Xinchao</creatorcontrib><creatorcontrib>Tao, Dacheng</creatorcontrib><title>Eigenfunction-Based Multitask Learning in a Reproducing Kernel Hilbert Space</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Multitask learning aims to improve the performance on related tasks by exploring the interdependence among them. Existing multitask learning methods explore the relatedness among tasks on the basis of the input features and the model parameters. In this paper, we focus on nonparametric multitask learning and propose to measure task relatedness from a novel perspective in a reproducing kernel Hilbert space (RKHS). Past works have shown that the objective function for a given task can be approximated using the top eigenvalues and corresponding eigenfunctions of a predefined integral operator on an RKHS. In our method, we formulate our objective for multitask learning as a linear combination of two sets of eigenfunctions, common eigenfunctions shared by different tasks and unique eigenfunctions in individual tasks, such that the eigenfunctions for one task can provide additional information on another and help to improve its performance. We present both theoretical and empirical validations of our proposed approach. The theoretical analysis demonstrates that our learning algorithm is uniformly argument stable and that the convergence rate of the generalization upper bound can be improved by learning multiple tasks. Experiments on several benchmark multitask learning data sets show that our method yields promising results.</description><subject>Algorithms</subject><subject>Eigenfunction-based learning</subject><subject>Eigenvalues</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Eigenvectors</subject><subject>Empirical analysis</subject><subject>Hilbert space</subject><subject>Kernel</subject><subject>Kernels</subject><subject>Learning</subject><subject>Learning systems</subject><subject>Linear programming</subject><subject>Machine learning</subject><subject>Measurement</subject><subject>multitask learning</subject><subject>Objective function</subject><subject>Operators (mathematics)</subject><subject>Optimization</subject><subject>Performance enhancement</subject><subject>regression</subject><subject>Task analysis</subject><subject>task relatedness</subject><subject>Theoretical analysis</subject><subject>Upper bounds</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkFFP2zAQgC00BKjwB5g0RdrLXlLOdmI7jxvqVrQAEgWJN8uJL8gsdYqdPPDv59KuD7N0sn333en0EXJJYU4pVFePd3f1as6AqjlTkouiOiJnjAqWM67Up8NbPp-SixhfIR0BZeJOyCkHLimv4IzUC_eCvpt8O7rB5z9MRJvdTv3oRhP_ZDWa4J1_yZzPTPaAmzDYqd0mfmPw2GdL1zcYxmy1MS2ek-PO9BEv9veMPP1cPF4v8_r-18319zpveUnHHEsjKyk6aWlXWMsllBxEI6QoeNN1gpYFNgVrhWVUoeKtBQVSWlalb4WGz8i33dy0ztuEcdRrF1vse-NxmKJmlIkKoCwgoV__Q1-HKfi0nWaMg0wBNFFsR7VhiDFgpzfBrU141xT0Vrf-0K23uvVed2r6sh89NWu0h5Z_chPweQc4RDyUVZmKivO_AUqB_g</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Tian, Xinmei</creator><creator>Li, Ya</creator><creator>Liu, Tongliang</creator><creator>Wang, Xinchao</creator><creator>Tao, Dacheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7225-5449</orcidid><orcidid>https://orcid.org/0000-0002-9640-6472</orcidid><orcidid>https://orcid.org/0000-0002-5952-8753</orcidid></search><sort><creationdate>20190601</creationdate><title>Eigenfunction-Based Multitask Learning in a Reproducing Kernel Hilbert Space</title><author>Tian, Xinmei ; Li, Ya ; Liu, Tongliang ; Wang, Xinchao ; Tao, Dacheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-e5a7976f7d1f4dd3705306b67643bff6154eb42c6d218e83cd08077d2918e9ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Eigenfunction-based learning</topic><topic>Eigenvalues</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Eigenvectors</topic><topic>Empirical analysis</topic><topic>Hilbert space</topic><topic>Kernel</topic><topic>Kernels</topic><topic>Learning</topic><topic>Learning systems</topic><topic>Linear programming</topic><topic>Machine learning</topic><topic>Measurement</topic><topic>multitask learning</topic><topic>Objective function</topic><topic>Operators (mathematics)</topic><topic>Optimization</topic><topic>Performance enhancement</topic><topic>regression</topic><topic>Task analysis</topic><topic>task relatedness</topic><topic>Theoretical analysis</topic><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Tian, Xinmei</creatorcontrib><creatorcontrib>Li, Ya</creatorcontrib><creatorcontrib>Liu, Tongliang</creatorcontrib><creatorcontrib>Wang, Xinchao</creatorcontrib><creatorcontrib>Tao, Dacheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tian, Xinmei</au><au>Li, Ya</au><au>Liu, Tongliang</au><au>Wang, Xinchao</au><au>Tao, Dacheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eigenfunction-Based Multitask Learning in a Reproducing Kernel Hilbert Space</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>30</volume><issue>6</issue><spage>1818</spage><epage>1830</epage><pages>1818-1830</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Multitask learning aims to improve the performance on related tasks by exploring the interdependence among them. Existing multitask learning methods explore the relatedness among tasks on the basis of the input features and the model parameters. In this paper, we focus on nonparametric multitask learning and propose to measure task relatedness from a novel perspective in a reproducing kernel Hilbert space (RKHS). Past works have shown that the objective function for a given task can be approximated using the top eigenvalues and corresponding eigenfunctions of a predefined integral operator on an RKHS. In our method, we formulate our objective for multitask learning as a linear combination of two sets of eigenfunctions, common eigenfunctions shared by different tasks and unique eigenfunctions in individual tasks, such that the eigenfunctions for one task can provide additional information on another and help to improve its performance. We present both theoretical and empirical validations of our proposed approach. The theoretical analysis demonstrates that our learning algorithm is uniformly argument stable and that the convergence rate of the generalization upper bound can be improved by learning multiple tasks. Experiments on several benchmark multitask learning data sets show that our method yields promising results.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30371390</pmid><doi>10.1109/TNNLS.2018.2873649</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7225-5449</orcidid><orcidid>https://orcid.org/0000-0002-9640-6472</orcidid><orcidid>https://orcid.org/0000-0002-5952-8753</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2019-06, Vol.30 (6), p.1818-1830
issn 2162-237X
2162-2388
language eng
recordid cdi_proquest_miscellaneous_2126900540
source IEEE Electronic Library (IEL)
subjects Algorithms
Eigenfunction-based learning
Eigenvalues
Eigenvalues and eigenfunctions
Eigenvectors
Empirical analysis
Hilbert space
Kernel
Kernels
Learning
Learning systems
Linear programming
Machine learning
Measurement
multitask learning
Objective function
Operators (mathematics)
Optimization
Performance enhancement
regression
Task analysis
task relatedness
Theoretical analysis
Upper bounds
title Eigenfunction-Based Multitask Learning in a Reproducing Kernel Hilbert Space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A59%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eigenfunction-Based%20Multitask%20Learning%20in%20a%20Reproducing%20Kernel%20Hilbert%20Space&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Tian,%20Xinmei&rft.date=2019-06-01&rft.volume=30&rft.issue=6&rft.spage=1818&rft.epage=1830&rft.pages=1818-1830&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2018.2873649&rft_dat=%3Cproquest_RIE%3E2230723001%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2230723001&rft_id=info:pmid/30371390&rft_ieee_id=8513983&rfr_iscdi=true