Internal Electric Field in Co-Doped BaTiO3 With Co2+/3+, Nb5+, Li+, and F−: Impact on Functional Properties and Charge Compensation With Niobium and Fluorine Ions

Dense barium titanate (BaTiO 3 ) ceramics ( d_{\text {rel}} > 95{\%} ) with a microscale grain size are obtained at 800 °C-1100 °C by a solid-state ceramic process. BaTiO 3 (BT) doped with Co 2+/3+ leads to a significant improvement in the properties ( d_{33}> 250 pC/N). Soft and hard charact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2019-01, Vol.66 (1), p.154-162
Hauptverfasser: Ul, Remy, Levassort, Franck, Lematre, Michael, Tran-Huu-Hue, Louis-Pascal, Pham-Thi, Mai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 162
container_issue 1
container_start_page 154
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 66
creator Ul, Remy
Levassort, Franck
Lematre, Michael
Tran-Huu-Hue, Louis-Pascal
Pham-Thi, Mai
description Dense barium titanate (BaTiO 3 ) ceramics ( d_{\text {rel}} > 95{\%} ) with a microscale grain size are obtained at 800 °C-1100 °C by a solid-state ceramic process. BaTiO 3 (BT) doped with Co 2+/3+ leads to a significant improvement in the properties ( d_{33}> 250 pC/N). Soft and hard characteristics of the piezoceramics are observed depending on the dopant ions. The Co/Li acceptor dopants lead to hard piezoceramics and aging phenomena. Aged BT:Co, Li exhibits double loops and a distorted hysteresis cycle for nonpoled and poled ceramics, respectively. Ceramics poled by the increasing field process at room temperature and the field cooling process present different poled and aged states, which are dependent on the thermal history and poling process. The distorted hysteresis loops for BT:Co, Li indicate an increased internal bias field with aging time. Insertion of donor dopants, such as Nb 5+ ions, significantly reduces the internal field. These behaviors are related to the presence of defect dipoles ( \text{M}_{\text {Ti}} "- \text{V}{_{\mathrm {O}}} {^{\circ }} {^{\circ }})^{x} due to the insertion of acceptor dopants in the B-sites following the oxygen vacancies to equilibrate charge compensation. BT:Co sintered with LiF leads to a quasi-symmetric hysteresis loop, indicating that F − may insert into an oxygen site and counteract the formation of oxygen vacancies. Dielectric drift of BT:Co, Li shows resilience to an ac electric field, which is related to the increased internal field. BT doped with 0.75 mol% Co 2+/3+ and 1 mol% Li 2 CO 3 presents hard piezoelectric behavior with a Rayleigh coefficient \alpha = 2.53\,\,10^{-7} m/V and the capability to handle high electrical stress of up to 400 \text{V}_{\text {rms}} /mm.
doi_str_mv 10.1109/TUFFC.2018.2878365
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2126899963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8510839</ieee_id><sourcerecordid>2169460070</sourcerecordid><originalsourceid>FETCH-LOGICAL-i166t-5e7e7a30d3e90c282a03388df2327435779ac657d7a48a5576ffcb4b5c15a17c3</originalsourceid><addsrcrecordid>eNpd0M1O3DAQwHELFYkt5QXKxVIvSJDFH_EXNwikXWkFHBb1uPI6s8UosYOdHPoGPfcZ-mR9kmbZnrjMSKOf_odB6DMlc0qJuVw91XU1Z4TqOdNKcykO0IwKJgpthPiAZkRrUXBCyRH6mPMLIbQsDZuhP4swQAq2xXctuCF5h2sPbYN9wFUsbmMPDb6xK__A8Xc_PE9Hdn7Jzy_w_UZMc-mnYUOD67-_fl_hRddbN-AYcD0GN_i4Kz-mqZIGD_lNVs82_YAp1PUQst2hffrex40fu32uHWPyAfAihvwJHW5tm-Hk_z5GT_XdqvpWLB--LqrrZeGplEMhQIGynDQcDHFMM0s417rZMs5UyYVSxjopVKNsqa0QSm63blNuhKPCUuX4MTrbd_sUX0fIw7rz2UHb2gBxzGtGmdTGGMkn-uUdfYnj7o87JU0pCVFkUqd75QFg3Sff2fRzrQUlmhv-D-FfguE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2169460070</pqid></control><display><type>article</type><title>Internal Electric Field in Co-Doped BaTiO3 With Co2+/3+, Nb5+, Li+, and F−: Impact on Functional Properties and Charge Compensation With Niobium and Fluorine Ions</title><source>IEEE Electronic Library (IEL)</source><creator>Ul, Remy ; Levassort, Franck ; Lematre, Michael ; Tran-Huu-Hue, Louis-Pascal ; Pham-Thi, Mai</creator><creatorcontrib>Ul, Remy ; Levassort, Franck ; Lematre, Michael ; Tran-Huu-Hue, Louis-Pascal ; Pham-Thi, Mai</creatorcontrib><description><![CDATA[Dense barium titanate (BaTiO 3 ) ceramics (<inline-formula> <tex-math notation="LaTeX">d_{\text {rel}} > 95{\%} </tex-math></inline-formula>) with a microscale grain size are obtained at 800 °C-1100 °C by a solid-state ceramic process. BaTiO 3 (BT) doped with Co 2+/3+ leads to a significant improvement in the properties (<inline-formula> <tex-math notation="LaTeX">d_{33}> 250 </tex-math></inline-formula> pC/N). Soft and hard characteristics of the piezoceramics are observed depending on the dopant ions. The Co/Li acceptor dopants lead to hard piezoceramics and aging phenomena. Aged BT:Co, Li exhibits double loops and a distorted hysteresis cycle for nonpoled and poled ceramics, respectively. Ceramics poled by the increasing field process at room temperature and the field cooling process present different poled and aged states, which are dependent on the thermal history and poling process. The distorted hysteresis loops for BT:Co, Li indicate an increased internal bias field with aging time. Insertion of donor dopants, such as Nb 5+ ions, significantly reduces the internal field. These behaviors are related to the presence of defect dipoles (<inline-formula> <tex-math notation="LaTeX">\text{M}_{\text {Ti}} </tex-math></inline-formula>"-<inline-formula> <tex-math notation="LaTeX">\text{V}{_{\mathrm {O}}} {^{\circ }} {^{\circ }})^{x} </tex-math></inline-formula> due to the insertion of acceptor dopants in the B-sites following the oxygen vacancies to equilibrate charge compensation. BT:Co sintered with LiF leads to a quasi-symmetric hysteresis loop, indicating that F − may insert into an oxygen site and counteract the formation of oxygen vacancies. Dielectric drift of BT:Co, Li shows resilience to an ac electric field, which is related to the increased internal field. BT doped with 0.75 mol% Co 2+/3+ and 1 mol% Li 2 CO 3 presents hard piezoelectric behavior with a Rayleigh coefficient <inline-formula> <tex-math notation="LaTeX">\alpha = 2.53\,\,10^{-7} </tex-math></inline-formula> m/V and the capability to handle high electrical stress of up to 400 <inline-formula> <tex-math notation="LaTeX">\text{V}_{\text {rms}} </tex-math></inline-formula>/mm.]]></description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2018.2878365</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aging ; Aging behavior ; barium titanate (BaTiO₃) ; Barium titanates ; Ceramics ; Cobalt ; Compensation ; Deoxidizing ; Dipoles ; Dopants ; doping ; Electric fields ; Fluorine ; Hysteresis ; Hysteresis loops ; Insertion ; Ions ; Lithium fluoride ; Niobium ; nonlinear properties ; Oxygen ; Piezoelectric ceramics ; Piezoelectric materials ; Piezoelectricity ; poling process ; Titanium compounds ; Vacancies</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2019-01, Vol.66 (1), p.154-162</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2019-9390 ; 0000-0001-8424-2637</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8510839$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8510839$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ul, Remy</creatorcontrib><creatorcontrib>Levassort, Franck</creatorcontrib><creatorcontrib>Lematre, Michael</creatorcontrib><creatorcontrib>Tran-Huu-Hue, Louis-Pascal</creatorcontrib><creatorcontrib>Pham-Thi, Mai</creatorcontrib><title>Internal Electric Field in Co-Doped BaTiO3 With Co2+/3+, Nb5+, Li+, and F−: Impact on Functional Properties and Charge Compensation With Niobium and Fluorine Ions</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><description><![CDATA[Dense barium titanate (BaTiO 3 ) ceramics (<inline-formula> <tex-math notation="LaTeX">d_{\text {rel}} > 95{\%} </tex-math></inline-formula>) with a microscale grain size are obtained at 800 °C-1100 °C by a solid-state ceramic process. BaTiO 3 (BT) doped with Co 2+/3+ leads to a significant improvement in the properties (<inline-formula> <tex-math notation="LaTeX">d_{33}> 250 </tex-math></inline-formula> pC/N). Soft and hard characteristics of the piezoceramics are observed depending on the dopant ions. The Co/Li acceptor dopants lead to hard piezoceramics and aging phenomena. Aged BT:Co, Li exhibits double loops and a distorted hysteresis cycle for nonpoled and poled ceramics, respectively. Ceramics poled by the increasing field process at room temperature and the field cooling process present different poled and aged states, which are dependent on the thermal history and poling process. The distorted hysteresis loops for BT:Co, Li indicate an increased internal bias field with aging time. Insertion of donor dopants, such as Nb 5+ ions, significantly reduces the internal field. These behaviors are related to the presence of defect dipoles (<inline-formula> <tex-math notation="LaTeX">\text{M}_{\text {Ti}} </tex-math></inline-formula>"-<inline-formula> <tex-math notation="LaTeX">\text{V}{_{\mathrm {O}}} {^{\circ }} {^{\circ }})^{x} </tex-math></inline-formula> due to the insertion of acceptor dopants in the B-sites following the oxygen vacancies to equilibrate charge compensation. BT:Co sintered with LiF leads to a quasi-symmetric hysteresis loop, indicating that F − may insert into an oxygen site and counteract the formation of oxygen vacancies. Dielectric drift of BT:Co, Li shows resilience to an ac electric field, which is related to the increased internal field. BT doped with 0.75 mol% Co 2+/3+ and 1 mol% Li 2 CO 3 presents hard piezoelectric behavior with a Rayleigh coefficient <inline-formula> <tex-math notation="LaTeX">\alpha = 2.53\,\,10^{-7} </tex-math></inline-formula> m/V and the capability to handle high electrical stress of up to 400 <inline-formula> <tex-math notation="LaTeX">\text{V}_{\text {rms}} </tex-math></inline-formula>/mm.]]></description><subject>Aging</subject><subject>Aging behavior</subject><subject>barium titanate (BaTiO₃)</subject><subject>Barium titanates</subject><subject>Ceramics</subject><subject>Cobalt</subject><subject>Compensation</subject><subject>Deoxidizing</subject><subject>Dipoles</subject><subject>Dopants</subject><subject>doping</subject><subject>Electric fields</subject><subject>Fluorine</subject><subject>Hysteresis</subject><subject>Hysteresis loops</subject><subject>Insertion</subject><subject>Ions</subject><subject>Lithium fluoride</subject><subject>Niobium</subject><subject>nonlinear properties</subject><subject>Oxygen</subject><subject>Piezoelectric ceramics</subject><subject>Piezoelectric materials</subject><subject>Piezoelectricity</subject><subject>poling process</subject><subject>Titanium compounds</subject><subject>Vacancies</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0M1O3DAQwHELFYkt5QXKxVIvSJDFH_EXNwikXWkFHBb1uPI6s8UosYOdHPoGPfcZ-mR9kmbZnrjMSKOf_odB6DMlc0qJuVw91XU1Z4TqOdNKcykO0IwKJgpthPiAZkRrUXBCyRH6mPMLIbQsDZuhP4swQAq2xXctuCF5h2sPbYN9wFUsbmMPDb6xK__A8Xc_PE9Hdn7Jzy_w_UZMc-mnYUOD67-_fl_hRddbN-AYcD0GN_i4Kz-mqZIGD_lNVs82_YAp1PUQst2hffrex40fu32uHWPyAfAihvwJHW5tm-Hk_z5GT_XdqvpWLB--LqrrZeGplEMhQIGynDQcDHFMM0s417rZMs5UyYVSxjopVKNsqa0QSm63blNuhKPCUuX4MTrbd_sUX0fIw7rz2UHb2gBxzGtGmdTGGMkn-uUdfYnj7o87JU0pCVFkUqd75QFg3Sff2fRzrQUlmhv-D-FfguE</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Ul, Remy</creator><creator>Levassort, Franck</creator><creator>Lematre, Michael</creator><creator>Tran-Huu-Hue, Louis-Pascal</creator><creator>Pham-Thi, Mai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2019-9390</orcidid><orcidid>https://orcid.org/0000-0001-8424-2637</orcidid></search><sort><creationdate>201901</creationdate><title>Internal Electric Field in Co-Doped BaTiO3 With Co2+/3+, Nb5+, Li+, and F−: Impact on Functional Properties and Charge Compensation With Niobium and Fluorine Ions</title><author>Ul, Remy ; Levassort, Franck ; Lematre, Michael ; Tran-Huu-Hue, Louis-Pascal ; Pham-Thi, Mai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i166t-5e7e7a30d3e90c282a03388df2327435779ac657d7a48a5576ffcb4b5c15a17c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aging</topic><topic>Aging behavior</topic><topic>barium titanate (BaTiO₃)</topic><topic>Barium titanates</topic><topic>Ceramics</topic><topic>Cobalt</topic><topic>Compensation</topic><topic>Deoxidizing</topic><topic>Dipoles</topic><topic>Dopants</topic><topic>doping</topic><topic>Electric fields</topic><topic>Fluorine</topic><topic>Hysteresis</topic><topic>Hysteresis loops</topic><topic>Insertion</topic><topic>Ions</topic><topic>Lithium fluoride</topic><topic>Niobium</topic><topic>nonlinear properties</topic><topic>Oxygen</topic><topic>Piezoelectric ceramics</topic><topic>Piezoelectric materials</topic><topic>Piezoelectricity</topic><topic>poling process</topic><topic>Titanium compounds</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ul, Remy</creatorcontrib><creatorcontrib>Levassort, Franck</creatorcontrib><creatorcontrib>Lematre, Michael</creatorcontrib><creatorcontrib>Tran-Huu-Hue, Louis-Pascal</creatorcontrib><creatorcontrib>Pham-Thi, Mai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ul, Remy</au><au>Levassort, Franck</au><au>Lematre, Michael</au><au>Tran-Huu-Hue, Louis-Pascal</au><au>Pham-Thi, Mai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Internal Electric Field in Co-Doped BaTiO3 With Co2+/3+, Nb5+, Li+, and F−: Impact on Functional Properties and Charge Compensation With Niobium and Fluorine Ions</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><date>2019-01</date><risdate>2019</risdate><volume>66</volume><issue>1</issue><spage>154</spage><epage>162</epage><pages>154-162</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract><![CDATA[Dense barium titanate (BaTiO 3 ) ceramics (<inline-formula> <tex-math notation="LaTeX">d_{\text {rel}} > 95{\%} </tex-math></inline-formula>) with a microscale grain size are obtained at 800 °C-1100 °C by a solid-state ceramic process. BaTiO 3 (BT) doped with Co 2+/3+ leads to a significant improvement in the properties (<inline-formula> <tex-math notation="LaTeX">d_{33}> 250 </tex-math></inline-formula> pC/N). Soft and hard characteristics of the piezoceramics are observed depending on the dopant ions. The Co/Li acceptor dopants lead to hard piezoceramics and aging phenomena. Aged BT:Co, Li exhibits double loops and a distorted hysteresis cycle for nonpoled and poled ceramics, respectively. Ceramics poled by the increasing field process at room temperature and the field cooling process present different poled and aged states, which are dependent on the thermal history and poling process. The distorted hysteresis loops for BT:Co, Li indicate an increased internal bias field with aging time. Insertion of donor dopants, such as Nb 5+ ions, significantly reduces the internal field. These behaviors are related to the presence of defect dipoles (<inline-formula> <tex-math notation="LaTeX">\text{M}_{\text {Ti}} </tex-math></inline-formula>"-<inline-formula> <tex-math notation="LaTeX">\text{V}{_{\mathrm {O}}} {^{\circ }} {^{\circ }})^{x} </tex-math></inline-formula> due to the insertion of acceptor dopants in the B-sites following the oxygen vacancies to equilibrate charge compensation. BT:Co sintered with LiF leads to a quasi-symmetric hysteresis loop, indicating that F − may insert into an oxygen site and counteract the formation of oxygen vacancies. Dielectric drift of BT:Co, Li shows resilience to an ac electric field, which is related to the increased internal field. BT doped with 0.75 mol% Co 2+/3+ and 1 mol% Li 2 CO 3 presents hard piezoelectric behavior with a Rayleigh coefficient <inline-formula> <tex-math notation="LaTeX">\alpha = 2.53\,\,10^{-7} </tex-math></inline-formula> m/V and the capability to handle high electrical stress of up to 400 <inline-formula> <tex-math notation="LaTeX">\text{V}_{\text {rms}} </tex-math></inline-formula>/mm.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TUFFC.2018.2878365</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2019-9390</orcidid><orcidid>https://orcid.org/0000-0001-8424-2637</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2019-01, Vol.66 (1), p.154-162
issn 0885-3010
1525-8955
language eng
recordid cdi_proquest_miscellaneous_2126899963
source IEEE Electronic Library (IEL)
subjects Aging
Aging behavior
barium titanate (BaTiO₃)
Barium titanates
Ceramics
Cobalt
Compensation
Deoxidizing
Dipoles
Dopants
doping
Electric fields
Fluorine
Hysteresis
Hysteresis loops
Insertion
Ions
Lithium fluoride
Niobium
nonlinear properties
Oxygen
Piezoelectric ceramics
Piezoelectric materials
Piezoelectricity
poling process
Titanium compounds
Vacancies
title Internal Electric Field in Co-Doped BaTiO3 With Co2+/3+, Nb5+, Li+, and F−: Impact on Functional Properties and Charge Compensation With Niobium and Fluorine Ions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A25%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Internal%20Electric%20Field%20in%20Co-Doped%20BaTiO3%20With%20Co2+/3+,%20Nb5+,%20Li+,%20and%20F%E2%88%92:%20Impact%20on%20Functional%20Properties%20and%20Charge%20Compensation%20With%20Niobium%20and%20Fluorine%20Ions&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Ul,%20Remy&rft.date=2019-01&rft.volume=66&rft.issue=1&rft.spage=154&rft.epage=162&rft.pages=154-162&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2018.2878365&rft_dat=%3Cproquest_RIE%3E2169460070%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2169460070&rft_id=info:pmid/&rft_ieee_id=8510839&rfr_iscdi=true