Internal Electric Field in Co-Doped BaTiO3 With Co2+/3+, Nb5+, Li+, and F−: Impact on Functional Properties and Charge Compensation With Niobium and Fluorine Ions
Dense barium titanate (BaTiO 3 ) ceramics ( d_{\text {rel}} > 95{\%} ) with a microscale grain size are obtained at 800 °C-1100 °C by a solid-state ceramic process. BaTiO 3 (BT) doped with Co 2+/3+ leads to a significant improvement in the properties ( d_{33}> 250 pC/N). Soft and hard charact...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2019-01, Vol.66 (1), p.154-162 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 162 |
---|---|
container_issue | 1 |
container_start_page | 154 |
container_title | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
container_volume | 66 |
creator | Ul, Remy Levassort, Franck Lematre, Michael Tran-Huu-Hue, Louis-Pascal Pham-Thi, Mai |
description | Dense barium titanate (BaTiO 3 ) ceramics ( d_{\text {rel}} > 95{\%} ) with a microscale grain size are obtained at 800 °C-1100 °C by a solid-state ceramic process. BaTiO 3 (BT) doped with Co 2+/3+ leads to a significant improvement in the properties ( d_{33}> 250 pC/N). Soft and hard characteristics of the piezoceramics are observed depending on the dopant ions. The Co/Li acceptor dopants lead to hard piezoceramics and aging phenomena. Aged BT:Co, Li exhibits double loops and a distorted hysteresis cycle for nonpoled and poled ceramics, respectively. Ceramics poled by the increasing field process at room temperature and the field cooling process present different poled and aged states, which are dependent on the thermal history and poling process. The distorted hysteresis loops for BT:Co, Li indicate an increased internal bias field with aging time. Insertion of donor dopants, such as Nb 5+ ions, significantly reduces the internal field. These behaviors are related to the presence of defect dipoles ( \text{M}_{\text {Ti}} "- \text{V}{_{\mathrm {O}}} {^{\circ }} {^{\circ }})^{x} due to the insertion of acceptor dopants in the B-sites following the oxygen vacancies to equilibrate charge compensation. BT:Co sintered with LiF leads to a quasi-symmetric hysteresis loop, indicating that F − may insert into an oxygen site and counteract the formation of oxygen vacancies. Dielectric drift of BT:Co, Li shows resilience to an ac electric field, which is related to the increased internal field. BT doped with 0.75 mol% Co 2+/3+ and 1 mol% Li 2 CO 3 presents hard piezoelectric behavior with a Rayleigh coefficient \alpha = 2.53\,\,10^{-7} m/V and the capability to handle high electrical stress of up to 400 \text{V}_{\text {rms}} /mm. |
doi_str_mv | 10.1109/TUFFC.2018.2878365 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2126899963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8510839</ieee_id><sourcerecordid>2169460070</sourcerecordid><originalsourceid>FETCH-LOGICAL-i166t-5e7e7a30d3e90c282a03388df2327435779ac657d7a48a5576ffcb4b5c15a17c3</originalsourceid><addsrcrecordid>eNpd0M1O3DAQwHELFYkt5QXKxVIvSJDFH_EXNwikXWkFHBb1uPI6s8UosYOdHPoGPfcZ-mR9kmbZnrjMSKOf_odB6DMlc0qJuVw91XU1Z4TqOdNKcykO0IwKJgpthPiAZkRrUXBCyRH6mPMLIbQsDZuhP4swQAq2xXctuCF5h2sPbYN9wFUsbmMPDb6xK__A8Xc_PE9Hdn7Jzy_w_UZMc-mnYUOD67-_fl_hRddbN-AYcD0GN_i4Kz-mqZIGD_lNVs82_YAp1PUQst2hffrex40fu32uHWPyAfAihvwJHW5tm-Hk_z5GT_XdqvpWLB--LqrrZeGplEMhQIGynDQcDHFMM0s417rZMs5UyYVSxjopVKNsqa0QSm63blNuhKPCUuX4MTrbd_sUX0fIw7rz2UHb2gBxzGtGmdTGGMkn-uUdfYnj7o87JU0pCVFkUqd75QFg3Sff2fRzrQUlmhv-D-FfguE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2169460070</pqid></control><display><type>article</type><title>Internal Electric Field in Co-Doped BaTiO3 With Co2+/3+, Nb5+, Li+, and F−: Impact on Functional Properties and Charge Compensation With Niobium and Fluorine Ions</title><source>IEEE Electronic Library (IEL)</source><creator>Ul, Remy ; Levassort, Franck ; Lematre, Michael ; Tran-Huu-Hue, Louis-Pascal ; Pham-Thi, Mai</creator><creatorcontrib>Ul, Remy ; Levassort, Franck ; Lematre, Michael ; Tran-Huu-Hue, Louis-Pascal ; Pham-Thi, Mai</creatorcontrib><description><![CDATA[Dense barium titanate (BaTiO 3 ) ceramics (<inline-formula> <tex-math notation="LaTeX">d_{\text {rel}} > 95{\%} </tex-math></inline-formula>) with a microscale grain size are obtained at 800 °C-1100 °C by a solid-state ceramic process. BaTiO 3 (BT) doped with Co 2+/3+ leads to a significant improvement in the properties (<inline-formula> <tex-math notation="LaTeX">d_{33}> 250 </tex-math></inline-formula> pC/N). Soft and hard characteristics of the piezoceramics are observed depending on the dopant ions. The Co/Li acceptor dopants lead to hard piezoceramics and aging phenomena. Aged BT:Co, Li exhibits double loops and a distorted hysteresis cycle for nonpoled and poled ceramics, respectively. Ceramics poled by the increasing field process at room temperature and the field cooling process present different poled and aged states, which are dependent on the thermal history and poling process. The distorted hysteresis loops for BT:Co, Li indicate an increased internal bias field with aging time. Insertion of donor dopants, such as Nb 5+ ions, significantly reduces the internal field. These behaviors are related to the presence of defect dipoles (<inline-formula> <tex-math notation="LaTeX">\text{M}_{\text {Ti}} </tex-math></inline-formula>"-<inline-formula> <tex-math notation="LaTeX">\text{V}{_{\mathrm {O}}} {^{\circ }} {^{\circ }})^{x} </tex-math></inline-formula> due to the insertion of acceptor dopants in the B-sites following the oxygen vacancies to equilibrate charge compensation. BT:Co sintered with LiF leads to a quasi-symmetric hysteresis loop, indicating that F − may insert into an oxygen site and counteract the formation of oxygen vacancies. Dielectric drift of BT:Co, Li shows resilience to an ac electric field, which is related to the increased internal field. BT doped with 0.75 mol% Co 2+/3+ and 1 mol% Li 2 CO 3 presents hard piezoelectric behavior with a Rayleigh coefficient <inline-formula> <tex-math notation="LaTeX">\alpha = 2.53\,\,10^{-7} </tex-math></inline-formula> m/V and the capability to handle high electrical stress of up to 400 <inline-formula> <tex-math notation="LaTeX">\text{V}_{\text {rms}} </tex-math></inline-formula>/mm.]]></description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2018.2878365</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aging ; Aging behavior ; barium titanate (BaTiO₃) ; Barium titanates ; Ceramics ; Cobalt ; Compensation ; Deoxidizing ; Dipoles ; Dopants ; doping ; Electric fields ; Fluorine ; Hysteresis ; Hysteresis loops ; Insertion ; Ions ; Lithium fluoride ; Niobium ; nonlinear properties ; Oxygen ; Piezoelectric ceramics ; Piezoelectric materials ; Piezoelectricity ; poling process ; Titanium compounds ; Vacancies</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2019-01, Vol.66 (1), p.154-162</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2019-9390 ; 0000-0001-8424-2637</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8510839$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8510839$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ul, Remy</creatorcontrib><creatorcontrib>Levassort, Franck</creatorcontrib><creatorcontrib>Lematre, Michael</creatorcontrib><creatorcontrib>Tran-Huu-Hue, Louis-Pascal</creatorcontrib><creatorcontrib>Pham-Thi, Mai</creatorcontrib><title>Internal Electric Field in Co-Doped BaTiO3 With Co2+/3+, Nb5+, Li+, and F−: Impact on Functional Properties and Charge Compensation With Niobium and Fluorine Ions</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><description><![CDATA[Dense barium titanate (BaTiO 3 ) ceramics (<inline-formula> <tex-math notation="LaTeX">d_{\text {rel}} > 95{\%} </tex-math></inline-formula>) with a microscale grain size are obtained at 800 °C-1100 °C by a solid-state ceramic process. BaTiO 3 (BT) doped with Co 2+/3+ leads to a significant improvement in the properties (<inline-formula> <tex-math notation="LaTeX">d_{33}> 250 </tex-math></inline-formula> pC/N). Soft and hard characteristics of the piezoceramics are observed depending on the dopant ions. The Co/Li acceptor dopants lead to hard piezoceramics and aging phenomena. Aged BT:Co, Li exhibits double loops and a distorted hysteresis cycle for nonpoled and poled ceramics, respectively. Ceramics poled by the increasing field process at room temperature and the field cooling process present different poled and aged states, which are dependent on the thermal history and poling process. The distorted hysteresis loops for BT:Co, Li indicate an increased internal bias field with aging time. Insertion of donor dopants, such as Nb 5+ ions, significantly reduces the internal field. These behaviors are related to the presence of defect dipoles (<inline-formula> <tex-math notation="LaTeX">\text{M}_{\text {Ti}} </tex-math></inline-formula>"-<inline-formula> <tex-math notation="LaTeX">\text{V}{_{\mathrm {O}}} {^{\circ }} {^{\circ }})^{x} </tex-math></inline-formula> due to the insertion of acceptor dopants in the B-sites following the oxygen vacancies to equilibrate charge compensation. BT:Co sintered with LiF leads to a quasi-symmetric hysteresis loop, indicating that F − may insert into an oxygen site and counteract the formation of oxygen vacancies. Dielectric drift of BT:Co, Li shows resilience to an ac electric field, which is related to the increased internal field. BT doped with 0.75 mol% Co 2+/3+ and 1 mol% Li 2 CO 3 presents hard piezoelectric behavior with a Rayleigh coefficient <inline-formula> <tex-math notation="LaTeX">\alpha = 2.53\,\,10^{-7} </tex-math></inline-formula> m/V and the capability to handle high electrical stress of up to 400 <inline-formula> <tex-math notation="LaTeX">\text{V}_{\text {rms}} </tex-math></inline-formula>/mm.]]></description><subject>Aging</subject><subject>Aging behavior</subject><subject>barium titanate (BaTiO₃)</subject><subject>Barium titanates</subject><subject>Ceramics</subject><subject>Cobalt</subject><subject>Compensation</subject><subject>Deoxidizing</subject><subject>Dipoles</subject><subject>Dopants</subject><subject>doping</subject><subject>Electric fields</subject><subject>Fluorine</subject><subject>Hysteresis</subject><subject>Hysteresis loops</subject><subject>Insertion</subject><subject>Ions</subject><subject>Lithium fluoride</subject><subject>Niobium</subject><subject>nonlinear properties</subject><subject>Oxygen</subject><subject>Piezoelectric ceramics</subject><subject>Piezoelectric materials</subject><subject>Piezoelectricity</subject><subject>poling process</subject><subject>Titanium compounds</subject><subject>Vacancies</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0M1O3DAQwHELFYkt5QXKxVIvSJDFH_EXNwikXWkFHBb1uPI6s8UosYOdHPoGPfcZ-mR9kmbZnrjMSKOf_odB6DMlc0qJuVw91XU1Z4TqOdNKcykO0IwKJgpthPiAZkRrUXBCyRH6mPMLIbQsDZuhP4swQAq2xXctuCF5h2sPbYN9wFUsbmMPDb6xK__A8Xc_PE9Hdn7Jzy_w_UZMc-mnYUOD67-_fl_hRddbN-AYcD0GN_i4Kz-mqZIGD_lNVs82_YAp1PUQst2hffrex40fu32uHWPyAfAihvwJHW5tm-Hk_z5GT_XdqvpWLB--LqrrZeGplEMhQIGynDQcDHFMM0s417rZMs5UyYVSxjopVKNsqa0QSm63blNuhKPCUuX4MTrbd_sUX0fIw7rz2UHb2gBxzGtGmdTGGMkn-uUdfYnj7o87JU0pCVFkUqd75QFg3Sff2fRzrQUlmhv-D-FfguE</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Ul, Remy</creator><creator>Levassort, Franck</creator><creator>Lematre, Michael</creator><creator>Tran-Huu-Hue, Louis-Pascal</creator><creator>Pham-Thi, Mai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2019-9390</orcidid><orcidid>https://orcid.org/0000-0001-8424-2637</orcidid></search><sort><creationdate>201901</creationdate><title>Internal Electric Field in Co-Doped BaTiO3 With Co2+/3+, Nb5+, Li+, and F−: Impact on Functional Properties and Charge Compensation With Niobium and Fluorine Ions</title><author>Ul, Remy ; Levassort, Franck ; Lematre, Michael ; Tran-Huu-Hue, Louis-Pascal ; Pham-Thi, Mai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i166t-5e7e7a30d3e90c282a03388df2327435779ac657d7a48a5576ffcb4b5c15a17c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aging</topic><topic>Aging behavior</topic><topic>barium titanate (BaTiO₃)</topic><topic>Barium titanates</topic><topic>Ceramics</topic><topic>Cobalt</topic><topic>Compensation</topic><topic>Deoxidizing</topic><topic>Dipoles</topic><topic>Dopants</topic><topic>doping</topic><topic>Electric fields</topic><topic>Fluorine</topic><topic>Hysteresis</topic><topic>Hysteresis loops</topic><topic>Insertion</topic><topic>Ions</topic><topic>Lithium fluoride</topic><topic>Niobium</topic><topic>nonlinear properties</topic><topic>Oxygen</topic><topic>Piezoelectric ceramics</topic><topic>Piezoelectric materials</topic><topic>Piezoelectricity</topic><topic>poling process</topic><topic>Titanium compounds</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ul, Remy</creatorcontrib><creatorcontrib>Levassort, Franck</creatorcontrib><creatorcontrib>Lematre, Michael</creatorcontrib><creatorcontrib>Tran-Huu-Hue, Louis-Pascal</creatorcontrib><creatorcontrib>Pham-Thi, Mai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ul, Remy</au><au>Levassort, Franck</au><au>Lematre, Michael</au><au>Tran-Huu-Hue, Louis-Pascal</au><au>Pham-Thi, Mai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Internal Electric Field in Co-Doped BaTiO3 With Co2+/3+, Nb5+, Li+, and F−: Impact on Functional Properties and Charge Compensation With Niobium and Fluorine Ions</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><date>2019-01</date><risdate>2019</risdate><volume>66</volume><issue>1</issue><spage>154</spage><epage>162</epage><pages>154-162</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract><![CDATA[Dense barium titanate (BaTiO 3 ) ceramics (<inline-formula> <tex-math notation="LaTeX">d_{\text {rel}} > 95{\%} </tex-math></inline-formula>) with a microscale grain size are obtained at 800 °C-1100 °C by a solid-state ceramic process. BaTiO 3 (BT) doped with Co 2+/3+ leads to a significant improvement in the properties (<inline-formula> <tex-math notation="LaTeX">d_{33}> 250 </tex-math></inline-formula> pC/N). Soft and hard characteristics of the piezoceramics are observed depending on the dopant ions. The Co/Li acceptor dopants lead to hard piezoceramics and aging phenomena. Aged BT:Co, Li exhibits double loops and a distorted hysteresis cycle for nonpoled and poled ceramics, respectively. Ceramics poled by the increasing field process at room temperature and the field cooling process present different poled and aged states, which are dependent on the thermal history and poling process. The distorted hysteresis loops for BT:Co, Li indicate an increased internal bias field with aging time. Insertion of donor dopants, such as Nb 5+ ions, significantly reduces the internal field. These behaviors are related to the presence of defect dipoles (<inline-formula> <tex-math notation="LaTeX">\text{M}_{\text {Ti}} </tex-math></inline-formula>"-<inline-formula> <tex-math notation="LaTeX">\text{V}{_{\mathrm {O}}} {^{\circ }} {^{\circ }})^{x} </tex-math></inline-formula> due to the insertion of acceptor dopants in the B-sites following the oxygen vacancies to equilibrate charge compensation. BT:Co sintered with LiF leads to a quasi-symmetric hysteresis loop, indicating that F − may insert into an oxygen site and counteract the formation of oxygen vacancies. Dielectric drift of BT:Co, Li shows resilience to an ac electric field, which is related to the increased internal field. BT doped with 0.75 mol% Co 2+/3+ and 1 mol% Li 2 CO 3 presents hard piezoelectric behavior with a Rayleigh coefficient <inline-formula> <tex-math notation="LaTeX">\alpha = 2.53\,\,10^{-7} </tex-math></inline-formula> m/V and the capability to handle high electrical stress of up to 400 <inline-formula> <tex-math notation="LaTeX">\text{V}_{\text {rms}} </tex-math></inline-formula>/mm.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TUFFC.2018.2878365</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2019-9390</orcidid><orcidid>https://orcid.org/0000-0001-8424-2637</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-3010 |
ispartof | IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2019-01, Vol.66 (1), p.154-162 |
issn | 0885-3010 1525-8955 |
language | eng |
recordid | cdi_proquest_miscellaneous_2126899963 |
source | IEEE Electronic Library (IEL) |
subjects | Aging Aging behavior barium titanate (BaTiO₃) Barium titanates Ceramics Cobalt Compensation Deoxidizing Dipoles Dopants doping Electric fields Fluorine Hysteresis Hysteresis loops Insertion Ions Lithium fluoride Niobium nonlinear properties Oxygen Piezoelectric ceramics Piezoelectric materials Piezoelectricity poling process Titanium compounds Vacancies |
title | Internal Electric Field in Co-Doped BaTiO3 With Co2+/3+, Nb5+, Li+, and F−: Impact on Functional Properties and Charge Compensation With Niobium and Fluorine Ions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A25%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Internal%20Electric%20Field%20in%20Co-Doped%20BaTiO3%20With%20Co2+/3+,%20Nb5+,%20Li+,%20and%20F%E2%88%92:%20Impact%20on%20Functional%20Properties%20and%20Charge%20Compensation%20With%20Niobium%20and%20Fluorine%20Ions&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Ul,%20Remy&rft.date=2019-01&rft.volume=66&rft.issue=1&rft.spage=154&rft.epage=162&rft.pages=154-162&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2018.2878365&rft_dat=%3Cproquest_RIE%3E2169460070%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2169460070&rft_id=info:pmid/&rft_ieee_id=8510839&rfr_iscdi=true |