Nondestructive 3D Imaging and Quantification of Hydrated Biofilm-Sediment Aggregates Using X‑ray Microcomputed Tomography
Biofilm-sediment aggregate (BSA) contains a high water content, either within internal pores and channels or bound by extracellular polymeric substances (EPS) forming a highly hydrated biofilm matrix. Desiccation of BSAs alters the biofilm morphology and thus the physical characteristics of porous m...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2018-11, Vol.52 (22), p.13306-13313 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13313 |
---|---|
container_issue | 22 |
container_start_page | 13306 |
container_title | Environmental science & technology |
container_volume | 52 |
creator | Zhang, Naiyu Thompson, Charlotte E. L Townend, Ian H Rankin, Kathryn E Paterson, David M Manning, Andrew J |
description | Biofilm-sediment aggregate (BSA) contains a high water content, either within internal pores and channels or bound by extracellular polymeric substances (EPS) forming a highly hydrated biofilm matrix. Desiccation of BSAs alters the biofilm morphology and thus the physical characteristics of porous media, such as the binding matrix within BSA and internal pore geometry. Observing BSAs in their naturally hydrated form is essential but hampered due to the lack of techniques for imaging and discerning hydrated materials. Generally, imagery techniques (scanning electron microscopy (SEM), transmission electron microscopy (TEM), and focused ion beam nanotomography (FIB-nt)) involve the desiccation of BSAs (freeze-drying or acetone dehydration) or prevent differentiation between BSA components such as inorganic particles and pore water (confocal laser scanning microscopic (CLSM)). Here, we propose a novel methodology that simultaneously achieves the 3D visualization and quantification of BSAs and their components in their hydrated form at a submicron resolution using X-ray microcomputed tomography (μ-CT). It enables the high-resolution detection of comparable morphology of multiphase components within a hydrated aggregate: each single inorganic particle and the hydrated biofilm matrix. This allows the estimation of aggregate density and the illustration of biofilm-sediment binding matrix. This information provides valuable insights into investigations of the transport of BSAs and aggregate-associated sediment particles, contaminants (such as microplastics), organic carbon, and their impacts on aquatic biogeochemical cycling. |
doi_str_mv | 10.1021/acs.est.8b03997 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2125314200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2154711641</sourcerecordid><originalsourceid>FETCH-LOGICAL-a505t-1ec938fe015106a2546bf9ffb4c2a197d9a2e0a166231ea554547d610efd9ab03</originalsourceid><addsrcrecordid>eNp1kcFO3DAQhq0KVBbac2-VJS6VUJYZO84mR0opIEGrqiBxi2YTOxht4sVOKq249BV4RZ4ER7twQOLkw3z_Z49_xr4gTBEEHlIVpjr003wOsihmH9gElYBE5Qq32AQAZVLI7GaH7YZwBwBCQv6R7UiQKoVcTNjDL9fV0eCHqrf_NJc_-HlLje0aTl3N_wzU9dbYinrrOu4MP1vVnnpd8-_WGbtok7-6tq3uen7UNF43cRb4dRgFN0__Hz2t-KWtvKtcuxzG3JVrXeNpebv6xLYNLYL-vDn32PXPk6vjs-Ti9-n58dFFQgpUn6CuCpkbDagQMhIqzeamMGaeVoKwmNUFCQ2EWSYkalIqVemszhC0iaP4MXvs29q79O5-iMuWrQ2VXiyo024IpUChJKYCRnT_DXrnBt_F10UqahGzFCN1uKbiXiF4bcqlty35VYlQjr2UsZdyTG96iYmvG-8wb3X9yr8UEYGDNTAmX-98T_cMecCafA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2154711641</pqid></control><display><type>article</type><title>Nondestructive 3D Imaging and Quantification of Hydrated Biofilm-Sediment Aggregates Using X‑ray Microcomputed Tomography</title><source>American Chemical Society Journals</source><creator>Zhang, Naiyu ; Thompson, Charlotte E. L ; Townend, Ian H ; Rankin, Kathryn E ; Paterson, David M ; Manning, Andrew J</creator><creatorcontrib>Zhang, Naiyu ; Thompson, Charlotte E. L ; Townend, Ian H ; Rankin, Kathryn E ; Paterson, David M ; Manning, Andrew J</creatorcontrib><description>Biofilm-sediment aggregate (BSA) contains a high water content, either within internal pores and channels or bound by extracellular polymeric substances (EPS) forming a highly hydrated biofilm matrix. Desiccation of BSAs alters the biofilm morphology and thus the physical characteristics of porous media, such as the binding matrix within BSA and internal pore geometry. Observing BSAs in their naturally hydrated form is essential but hampered due to the lack of techniques for imaging and discerning hydrated materials. Generally, imagery techniques (scanning electron microscopy (SEM), transmission electron microscopy (TEM), and focused ion beam nanotomography (FIB-nt)) involve the desiccation of BSAs (freeze-drying or acetone dehydration) or prevent differentiation between BSA components such as inorganic particles and pore water (confocal laser scanning microscopic (CLSM)). Here, we propose a novel methodology that simultaneously achieves the 3D visualization and quantification of BSAs and their components in their hydrated form at a submicron resolution using X-ray microcomputed tomography (μ-CT). It enables the high-resolution detection of comparable morphology of multiphase components within a hydrated aggregate: each single inorganic particle and the hydrated biofilm matrix. This allows the estimation of aggregate density and the illustration of biofilm-sediment binding matrix. This information provides valuable insights into investigations of the transport of BSAs and aggregate-associated sediment particles, contaminants (such as microplastics), organic carbon, and their impacts on aquatic biogeochemical cycling.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.8b03997</identifier><identifier>PMID: 30354082</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acetone ; Aggregates ; Binding ; Biofilms ; Channel pores ; Components ; Computed tomography ; Contaminants ; Dehydration ; Desiccants ; Desiccation ; Freeze drying ; Image transmission ; Ion beams ; Mathematical morphology ; Medical imaging ; Microplastics ; Microscopy ; Moisture content ; Morphology ; Organic carbon ; Physical characteristics ; Physical properties ; Pore water ; Porous media ; Scanning electron microscopy ; Sediment pollution ; Sediments ; Studies ; Tomography ; Transmission electron microscopy ; Visualization ; Water ; Water content</subject><ispartof>Environmental science & technology, 2018-11, Vol.52 (22), p.13306-13313</ispartof><rights>Copyright American Chemical Society Nov 20, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a505t-1ec938fe015106a2546bf9ffb4c2a197d9a2e0a166231ea554547d610efd9ab03</citedby><cites>FETCH-LOGICAL-a505t-1ec938fe015106a2546bf9ffb4c2a197d9a2e0a166231ea554547d610efd9ab03</cites><orcidid>0000-0001-6000-786X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.8b03997$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.8b03997$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30354082$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Naiyu</creatorcontrib><creatorcontrib>Thompson, Charlotte E. L</creatorcontrib><creatorcontrib>Townend, Ian H</creatorcontrib><creatorcontrib>Rankin, Kathryn E</creatorcontrib><creatorcontrib>Paterson, David M</creatorcontrib><creatorcontrib>Manning, Andrew J</creatorcontrib><title>Nondestructive 3D Imaging and Quantification of Hydrated Biofilm-Sediment Aggregates Using X‑ray Microcomputed Tomography</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Biofilm-sediment aggregate (BSA) contains a high water content, either within internal pores and channels or bound by extracellular polymeric substances (EPS) forming a highly hydrated biofilm matrix. Desiccation of BSAs alters the biofilm morphology and thus the physical characteristics of porous media, such as the binding matrix within BSA and internal pore geometry. Observing BSAs in their naturally hydrated form is essential but hampered due to the lack of techniques for imaging and discerning hydrated materials. Generally, imagery techniques (scanning electron microscopy (SEM), transmission electron microscopy (TEM), and focused ion beam nanotomography (FIB-nt)) involve the desiccation of BSAs (freeze-drying or acetone dehydration) or prevent differentiation between BSA components such as inorganic particles and pore water (confocal laser scanning microscopic (CLSM)). Here, we propose a novel methodology that simultaneously achieves the 3D visualization and quantification of BSAs and their components in their hydrated form at a submicron resolution using X-ray microcomputed tomography (μ-CT). It enables the high-resolution detection of comparable morphology of multiphase components within a hydrated aggregate: each single inorganic particle and the hydrated biofilm matrix. This allows the estimation of aggregate density and the illustration of biofilm-sediment binding matrix. This information provides valuable insights into investigations of the transport of BSAs and aggregate-associated sediment particles, contaminants (such as microplastics), organic carbon, and their impacts on aquatic biogeochemical cycling.</description><subject>Acetone</subject><subject>Aggregates</subject><subject>Binding</subject><subject>Biofilms</subject><subject>Channel pores</subject><subject>Components</subject><subject>Computed tomography</subject><subject>Contaminants</subject><subject>Dehydration</subject><subject>Desiccants</subject><subject>Desiccation</subject><subject>Freeze drying</subject><subject>Image transmission</subject><subject>Ion beams</subject><subject>Mathematical morphology</subject><subject>Medical imaging</subject><subject>Microplastics</subject><subject>Microscopy</subject><subject>Moisture content</subject><subject>Morphology</subject><subject>Organic carbon</subject><subject>Physical characteristics</subject><subject>Physical properties</subject><subject>Pore water</subject><subject>Porous media</subject><subject>Scanning electron microscopy</subject><subject>Sediment pollution</subject><subject>Sediments</subject><subject>Studies</subject><subject>Tomography</subject><subject>Transmission electron microscopy</subject><subject>Visualization</subject><subject>Water</subject><subject>Water content</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kcFO3DAQhq0KVBbac2-VJS6VUJYZO84mR0opIEGrqiBxi2YTOxht4sVOKq249BV4RZ4ER7twQOLkw3z_Z49_xr4gTBEEHlIVpjr003wOsihmH9gElYBE5Qq32AQAZVLI7GaH7YZwBwBCQv6R7UiQKoVcTNjDL9fV0eCHqrf_NJc_-HlLje0aTl3N_wzU9dbYinrrOu4MP1vVnnpd8-_WGbtok7-6tq3uen7UNF43cRb4dRgFN0__Hz2t-KWtvKtcuxzG3JVrXeNpebv6xLYNLYL-vDn32PXPk6vjs-Ti9-n58dFFQgpUn6CuCpkbDagQMhIqzeamMGaeVoKwmNUFCQ2EWSYkalIqVemszhC0iaP4MXvs29q79O5-iMuWrQ2VXiyo024IpUChJKYCRnT_DXrnBt_F10UqahGzFCN1uKbiXiF4bcqlty35VYlQjr2UsZdyTG96iYmvG-8wb3X9yr8UEYGDNTAmX-98T_cMecCafA</recordid><startdate>20181120</startdate><enddate>20181120</enddate><creator>Zhang, Naiyu</creator><creator>Thompson, Charlotte E. L</creator><creator>Townend, Ian H</creator><creator>Rankin, Kathryn E</creator><creator>Paterson, David M</creator><creator>Manning, Andrew J</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6000-786X</orcidid></search><sort><creationdate>20181120</creationdate><title>Nondestructive 3D Imaging and Quantification of Hydrated Biofilm-Sediment Aggregates Using X‑ray Microcomputed Tomography</title><author>Zhang, Naiyu ; Thompson, Charlotte E. L ; Townend, Ian H ; Rankin, Kathryn E ; Paterson, David M ; Manning, Andrew J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a505t-1ec938fe015106a2546bf9ffb4c2a197d9a2e0a166231ea554547d610efd9ab03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acetone</topic><topic>Aggregates</topic><topic>Binding</topic><topic>Biofilms</topic><topic>Channel pores</topic><topic>Components</topic><topic>Computed tomography</topic><topic>Contaminants</topic><topic>Dehydration</topic><topic>Desiccants</topic><topic>Desiccation</topic><topic>Freeze drying</topic><topic>Image transmission</topic><topic>Ion beams</topic><topic>Mathematical morphology</topic><topic>Medical imaging</topic><topic>Microplastics</topic><topic>Microscopy</topic><topic>Moisture content</topic><topic>Morphology</topic><topic>Organic carbon</topic><topic>Physical characteristics</topic><topic>Physical properties</topic><topic>Pore water</topic><topic>Porous media</topic><topic>Scanning electron microscopy</topic><topic>Sediment pollution</topic><topic>Sediments</topic><topic>Studies</topic><topic>Tomography</topic><topic>Transmission electron microscopy</topic><topic>Visualization</topic><topic>Water</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Naiyu</creatorcontrib><creatorcontrib>Thompson, Charlotte E. L</creatorcontrib><creatorcontrib>Townend, Ian H</creatorcontrib><creatorcontrib>Rankin, Kathryn E</creatorcontrib><creatorcontrib>Paterson, David M</creatorcontrib><creatorcontrib>Manning, Andrew J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Naiyu</au><au>Thompson, Charlotte E. L</au><au>Townend, Ian H</au><au>Rankin, Kathryn E</au><au>Paterson, David M</au><au>Manning, Andrew J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nondestructive 3D Imaging and Quantification of Hydrated Biofilm-Sediment Aggregates Using X‑ray Microcomputed Tomography</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2018-11-20</date><risdate>2018</risdate><volume>52</volume><issue>22</issue><spage>13306</spage><epage>13313</epage><pages>13306-13313</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Biofilm-sediment aggregate (BSA) contains a high water content, either within internal pores and channels or bound by extracellular polymeric substances (EPS) forming a highly hydrated biofilm matrix. Desiccation of BSAs alters the biofilm morphology and thus the physical characteristics of porous media, such as the binding matrix within BSA and internal pore geometry. Observing BSAs in their naturally hydrated form is essential but hampered due to the lack of techniques for imaging and discerning hydrated materials. Generally, imagery techniques (scanning electron microscopy (SEM), transmission electron microscopy (TEM), and focused ion beam nanotomography (FIB-nt)) involve the desiccation of BSAs (freeze-drying or acetone dehydration) or prevent differentiation between BSA components such as inorganic particles and pore water (confocal laser scanning microscopic (CLSM)). Here, we propose a novel methodology that simultaneously achieves the 3D visualization and quantification of BSAs and their components in their hydrated form at a submicron resolution using X-ray microcomputed tomography (μ-CT). It enables the high-resolution detection of comparable morphology of multiphase components within a hydrated aggregate: each single inorganic particle and the hydrated biofilm matrix. This allows the estimation of aggregate density and the illustration of biofilm-sediment binding matrix. This information provides valuable insights into investigations of the transport of BSAs and aggregate-associated sediment particles, contaminants (such as microplastics), organic carbon, and their impacts on aquatic biogeochemical cycling.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30354082</pmid><doi>10.1021/acs.est.8b03997</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6000-786X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2018-11, Vol.52 (22), p.13306-13313 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_2125314200 |
source | American Chemical Society Journals |
subjects | Acetone Aggregates Binding Biofilms Channel pores Components Computed tomography Contaminants Dehydration Desiccants Desiccation Freeze drying Image transmission Ion beams Mathematical morphology Medical imaging Microplastics Microscopy Moisture content Morphology Organic carbon Physical characteristics Physical properties Pore water Porous media Scanning electron microscopy Sediment pollution Sediments Studies Tomography Transmission electron microscopy Visualization Water Water content |
title | Nondestructive 3D Imaging and Quantification of Hydrated Biofilm-Sediment Aggregates Using X‑ray Microcomputed Tomography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A09%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nondestructive%203D%20Imaging%20and%20Quantification%20of%20Hydrated%20Biofilm-Sediment%20Aggregates%20Using%20X%E2%80%91ray%20Microcomputed%20Tomography&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Zhang,%20Naiyu&rft.date=2018-11-20&rft.volume=52&rft.issue=22&rft.spage=13306&rft.epage=13313&rft.pages=13306-13313&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.8b03997&rft_dat=%3Cproquest_cross%3E2154711641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2154711641&rft_id=info:pmid/30354082&rfr_iscdi=true |