Nondestructive 3D Imaging and Quantification of Hydrated Biofilm-Sediment Aggregates Using X‑ray Microcomputed Tomography

Biofilm-sediment aggregate (BSA) contains a high water content, either within internal pores and channels or bound by extracellular polymeric substances (EPS) forming a highly hydrated biofilm matrix. Desiccation of BSAs alters the biofilm morphology and thus the physical characteristics of porous m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2018-11, Vol.52 (22), p.13306-13313
Hauptverfasser: Zhang, Naiyu, Thompson, Charlotte E. L, Townend, Ian H, Rankin, Kathryn E, Paterson, David M, Manning, Andrew J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13313
container_issue 22
container_start_page 13306
container_title Environmental science & technology
container_volume 52
creator Zhang, Naiyu
Thompson, Charlotte E. L
Townend, Ian H
Rankin, Kathryn E
Paterson, David M
Manning, Andrew J
description Biofilm-sediment aggregate (BSA) contains a high water content, either within internal pores and channels or bound by extracellular polymeric substances (EPS) forming a highly hydrated biofilm matrix. Desiccation of BSAs alters the biofilm morphology and thus the physical characteristics of porous media, such as the binding matrix within BSA and internal pore geometry. Observing BSAs in their naturally hydrated form is essential but hampered due to the lack of techniques for imaging and discerning hydrated materials. Generally, imagery techniques (scanning electron microscopy (SEM), transmission electron microscopy (TEM), and focused ion beam nanotomography (FIB-nt)) involve the desiccation of BSAs (freeze-drying or acetone dehydration) or prevent differentiation between BSA components such as inorganic particles and pore water (confocal laser scanning microscopic (CLSM)). Here, we propose a novel methodology that simultaneously achieves the 3D visualization and quantification of BSAs and their components in their hydrated form at a submicron resolution using X-ray microcomputed tomography (μ-CT). It enables the high-resolution detection of comparable morphology of multiphase components within a hydrated aggregate: each single inorganic particle and the hydrated biofilm matrix. This allows the estimation of aggregate density and the illustration of biofilm-sediment binding matrix. This information provides valuable insights into investigations of the transport of BSAs and aggregate-associated sediment particles, contaminants (such as microplastics), organic carbon, and their impacts on aquatic biogeochemical cycling.
doi_str_mv 10.1021/acs.est.8b03997
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2125314200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2154711641</sourcerecordid><originalsourceid>FETCH-LOGICAL-a505t-1ec938fe015106a2546bf9ffb4c2a197d9a2e0a166231ea554547d610efd9ab03</originalsourceid><addsrcrecordid>eNp1kcFO3DAQhq0KVBbac2-VJS6VUJYZO84mR0opIEGrqiBxi2YTOxht4sVOKq249BV4RZ4ER7twQOLkw3z_Z49_xr4gTBEEHlIVpjr003wOsihmH9gElYBE5Qq32AQAZVLI7GaH7YZwBwBCQv6R7UiQKoVcTNjDL9fV0eCHqrf_NJc_-HlLje0aTl3N_wzU9dbYinrrOu4MP1vVnnpd8-_WGbtok7-6tq3uen7UNF43cRb4dRgFN0__Hz2t-KWtvKtcuxzG3JVrXeNpebv6xLYNLYL-vDn32PXPk6vjs-Ti9-n58dFFQgpUn6CuCpkbDagQMhIqzeamMGaeVoKwmNUFCQ2EWSYkalIqVemszhC0iaP4MXvs29q79O5-iMuWrQ2VXiyo024IpUChJKYCRnT_DXrnBt_F10UqahGzFCN1uKbiXiF4bcqlty35VYlQjr2UsZdyTG96iYmvG-8wb3X9yr8UEYGDNTAmX-98T_cMecCafA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2154711641</pqid></control><display><type>article</type><title>Nondestructive 3D Imaging and Quantification of Hydrated Biofilm-Sediment Aggregates Using X‑ray Microcomputed Tomography</title><source>American Chemical Society Journals</source><creator>Zhang, Naiyu ; Thompson, Charlotte E. L ; Townend, Ian H ; Rankin, Kathryn E ; Paterson, David M ; Manning, Andrew J</creator><creatorcontrib>Zhang, Naiyu ; Thompson, Charlotte E. L ; Townend, Ian H ; Rankin, Kathryn E ; Paterson, David M ; Manning, Andrew J</creatorcontrib><description>Biofilm-sediment aggregate (BSA) contains a high water content, either within internal pores and channels or bound by extracellular polymeric substances (EPS) forming a highly hydrated biofilm matrix. Desiccation of BSAs alters the biofilm morphology and thus the physical characteristics of porous media, such as the binding matrix within BSA and internal pore geometry. Observing BSAs in their naturally hydrated form is essential but hampered due to the lack of techniques for imaging and discerning hydrated materials. Generally, imagery techniques (scanning electron microscopy (SEM), transmission electron microscopy (TEM), and focused ion beam nanotomography (FIB-nt)) involve the desiccation of BSAs (freeze-drying or acetone dehydration) or prevent differentiation between BSA components such as inorganic particles and pore water (confocal laser scanning microscopic (CLSM)). Here, we propose a novel methodology that simultaneously achieves the 3D visualization and quantification of BSAs and their components in their hydrated form at a submicron resolution using X-ray microcomputed tomography (μ-CT). It enables the high-resolution detection of comparable morphology of multiphase components within a hydrated aggregate: each single inorganic particle and the hydrated biofilm matrix. This allows the estimation of aggregate density and the illustration of biofilm-sediment binding matrix. This information provides valuable insights into investigations of the transport of BSAs and aggregate-associated sediment particles, contaminants (such as microplastics), organic carbon, and their impacts on aquatic biogeochemical cycling.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.8b03997</identifier><identifier>PMID: 30354082</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acetone ; Aggregates ; Binding ; Biofilms ; Channel pores ; Components ; Computed tomography ; Contaminants ; Dehydration ; Desiccants ; Desiccation ; Freeze drying ; Image transmission ; Ion beams ; Mathematical morphology ; Medical imaging ; Microplastics ; Microscopy ; Moisture content ; Morphology ; Organic carbon ; Physical characteristics ; Physical properties ; Pore water ; Porous media ; Scanning electron microscopy ; Sediment pollution ; Sediments ; Studies ; Tomography ; Transmission electron microscopy ; Visualization ; Water ; Water content</subject><ispartof>Environmental science &amp; technology, 2018-11, Vol.52 (22), p.13306-13313</ispartof><rights>Copyright American Chemical Society Nov 20, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a505t-1ec938fe015106a2546bf9ffb4c2a197d9a2e0a166231ea554547d610efd9ab03</citedby><cites>FETCH-LOGICAL-a505t-1ec938fe015106a2546bf9ffb4c2a197d9a2e0a166231ea554547d610efd9ab03</cites><orcidid>0000-0001-6000-786X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.8b03997$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.8b03997$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30354082$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Naiyu</creatorcontrib><creatorcontrib>Thompson, Charlotte E. L</creatorcontrib><creatorcontrib>Townend, Ian H</creatorcontrib><creatorcontrib>Rankin, Kathryn E</creatorcontrib><creatorcontrib>Paterson, David M</creatorcontrib><creatorcontrib>Manning, Andrew J</creatorcontrib><title>Nondestructive 3D Imaging and Quantification of Hydrated Biofilm-Sediment Aggregates Using X‑ray Microcomputed Tomography</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Biofilm-sediment aggregate (BSA) contains a high water content, either within internal pores and channels or bound by extracellular polymeric substances (EPS) forming a highly hydrated biofilm matrix. Desiccation of BSAs alters the biofilm morphology and thus the physical characteristics of porous media, such as the binding matrix within BSA and internal pore geometry. Observing BSAs in their naturally hydrated form is essential but hampered due to the lack of techniques for imaging and discerning hydrated materials. Generally, imagery techniques (scanning electron microscopy (SEM), transmission electron microscopy (TEM), and focused ion beam nanotomography (FIB-nt)) involve the desiccation of BSAs (freeze-drying or acetone dehydration) or prevent differentiation between BSA components such as inorganic particles and pore water (confocal laser scanning microscopic (CLSM)). Here, we propose a novel methodology that simultaneously achieves the 3D visualization and quantification of BSAs and their components in their hydrated form at a submicron resolution using X-ray microcomputed tomography (μ-CT). It enables the high-resolution detection of comparable morphology of multiphase components within a hydrated aggregate: each single inorganic particle and the hydrated biofilm matrix. This allows the estimation of aggregate density and the illustration of biofilm-sediment binding matrix. This information provides valuable insights into investigations of the transport of BSAs and aggregate-associated sediment particles, contaminants (such as microplastics), organic carbon, and their impacts on aquatic biogeochemical cycling.</description><subject>Acetone</subject><subject>Aggregates</subject><subject>Binding</subject><subject>Biofilms</subject><subject>Channel pores</subject><subject>Components</subject><subject>Computed tomography</subject><subject>Contaminants</subject><subject>Dehydration</subject><subject>Desiccants</subject><subject>Desiccation</subject><subject>Freeze drying</subject><subject>Image transmission</subject><subject>Ion beams</subject><subject>Mathematical morphology</subject><subject>Medical imaging</subject><subject>Microplastics</subject><subject>Microscopy</subject><subject>Moisture content</subject><subject>Morphology</subject><subject>Organic carbon</subject><subject>Physical characteristics</subject><subject>Physical properties</subject><subject>Pore water</subject><subject>Porous media</subject><subject>Scanning electron microscopy</subject><subject>Sediment pollution</subject><subject>Sediments</subject><subject>Studies</subject><subject>Tomography</subject><subject>Transmission electron microscopy</subject><subject>Visualization</subject><subject>Water</subject><subject>Water content</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kcFO3DAQhq0KVBbac2-VJS6VUJYZO84mR0opIEGrqiBxi2YTOxht4sVOKq249BV4RZ4ER7twQOLkw3z_Z49_xr4gTBEEHlIVpjr003wOsihmH9gElYBE5Qq32AQAZVLI7GaH7YZwBwBCQv6R7UiQKoVcTNjDL9fV0eCHqrf_NJc_-HlLje0aTl3N_wzU9dbYinrrOu4MP1vVnnpd8-_WGbtok7-6tq3uen7UNF43cRb4dRgFN0__Hz2t-KWtvKtcuxzG3JVrXeNpebv6xLYNLYL-vDn32PXPk6vjs-Ti9-n58dFFQgpUn6CuCpkbDagQMhIqzeamMGaeVoKwmNUFCQ2EWSYkalIqVemszhC0iaP4MXvs29q79O5-iMuWrQ2VXiyo024IpUChJKYCRnT_DXrnBt_F10UqahGzFCN1uKbiXiF4bcqlty35VYlQjr2UsZdyTG96iYmvG-8wb3X9yr8UEYGDNTAmX-98T_cMecCafA</recordid><startdate>20181120</startdate><enddate>20181120</enddate><creator>Zhang, Naiyu</creator><creator>Thompson, Charlotte E. L</creator><creator>Townend, Ian H</creator><creator>Rankin, Kathryn E</creator><creator>Paterson, David M</creator><creator>Manning, Andrew J</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6000-786X</orcidid></search><sort><creationdate>20181120</creationdate><title>Nondestructive 3D Imaging and Quantification of Hydrated Biofilm-Sediment Aggregates Using X‑ray Microcomputed Tomography</title><author>Zhang, Naiyu ; Thompson, Charlotte E. L ; Townend, Ian H ; Rankin, Kathryn E ; Paterson, David M ; Manning, Andrew J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a505t-1ec938fe015106a2546bf9ffb4c2a197d9a2e0a166231ea554547d610efd9ab03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acetone</topic><topic>Aggregates</topic><topic>Binding</topic><topic>Biofilms</topic><topic>Channel pores</topic><topic>Components</topic><topic>Computed tomography</topic><topic>Contaminants</topic><topic>Dehydration</topic><topic>Desiccants</topic><topic>Desiccation</topic><topic>Freeze drying</topic><topic>Image transmission</topic><topic>Ion beams</topic><topic>Mathematical morphology</topic><topic>Medical imaging</topic><topic>Microplastics</topic><topic>Microscopy</topic><topic>Moisture content</topic><topic>Morphology</topic><topic>Organic carbon</topic><topic>Physical characteristics</topic><topic>Physical properties</topic><topic>Pore water</topic><topic>Porous media</topic><topic>Scanning electron microscopy</topic><topic>Sediment pollution</topic><topic>Sediments</topic><topic>Studies</topic><topic>Tomography</topic><topic>Transmission electron microscopy</topic><topic>Visualization</topic><topic>Water</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Naiyu</creatorcontrib><creatorcontrib>Thompson, Charlotte E. L</creatorcontrib><creatorcontrib>Townend, Ian H</creatorcontrib><creatorcontrib>Rankin, Kathryn E</creatorcontrib><creatorcontrib>Paterson, David M</creatorcontrib><creatorcontrib>Manning, Andrew J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Naiyu</au><au>Thompson, Charlotte E. L</au><au>Townend, Ian H</au><au>Rankin, Kathryn E</au><au>Paterson, David M</au><au>Manning, Andrew J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nondestructive 3D Imaging and Quantification of Hydrated Biofilm-Sediment Aggregates Using X‑ray Microcomputed Tomography</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2018-11-20</date><risdate>2018</risdate><volume>52</volume><issue>22</issue><spage>13306</spage><epage>13313</epage><pages>13306-13313</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Biofilm-sediment aggregate (BSA) contains a high water content, either within internal pores and channels or bound by extracellular polymeric substances (EPS) forming a highly hydrated biofilm matrix. Desiccation of BSAs alters the biofilm morphology and thus the physical characteristics of porous media, such as the binding matrix within BSA and internal pore geometry. Observing BSAs in their naturally hydrated form is essential but hampered due to the lack of techniques for imaging and discerning hydrated materials. Generally, imagery techniques (scanning electron microscopy (SEM), transmission electron microscopy (TEM), and focused ion beam nanotomography (FIB-nt)) involve the desiccation of BSAs (freeze-drying or acetone dehydration) or prevent differentiation between BSA components such as inorganic particles and pore water (confocal laser scanning microscopic (CLSM)). Here, we propose a novel methodology that simultaneously achieves the 3D visualization and quantification of BSAs and their components in their hydrated form at a submicron resolution using X-ray microcomputed tomography (μ-CT). It enables the high-resolution detection of comparable morphology of multiphase components within a hydrated aggregate: each single inorganic particle and the hydrated biofilm matrix. This allows the estimation of aggregate density and the illustration of biofilm-sediment binding matrix. This information provides valuable insights into investigations of the transport of BSAs and aggregate-associated sediment particles, contaminants (such as microplastics), organic carbon, and their impacts on aquatic biogeochemical cycling.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30354082</pmid><doi>10.1021/acs.est.8b03997</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6000-786X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2018-11, Vol.52 (22), p.13306-13313
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_2125314200
source American Chemical Society Journals
subjects Acetone
Aggregates
Binding
Biofilms
Channel pores
Components
Computed tomography
Contaminants
Dehydration
Desiccants
Desiccation
Freeze drying
Image transmission
Ion beams
Mathematical morphology
Medical imaging
Microplastics
Microscopy
Moisture content
Morphology
Organic carbon
Physical characteristics
Physical properties
Pore water
Porous media
Scanning electron microscopy
Sediment pollution
Sediments
Studies
Tomography
Transmission electron microscopy
Visualization
Water
Water content
title Nondestructive 3D Imaging and Quantification of Hydrated Biofilm-Sediment Aggregates Using X‑ray Microcomputed Tomography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A09%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nondestructive%203D%20Imaging%20and%20Quantification%20of%20Hydrated%20Biofilm-Sediment%20Aggregates%20Using%20X%E2%80%91ray%20Microcomputed%20Tomography&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Zhang,%20Naiyu&rft.date=2018-11-20&rft.volume=52&rft.issue=22&rft.spage=13306&rft.epage=13313&rft.pages=13306-13313&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.8b03997&rft_dat=%3Cproquest_cross%3E2154711641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2154711641&rft_id=info:pmid/30354082&rfr_iscdi=true