Implications of Molecular Topology for Nanoscale Mechanical Unfolding
Biopolymer unfolding events are ubiquitous in biology and mechanical unfolding is an established approach to study the structure and function of biomolecules, yet whether and how mechanical unfolding processes depend on native state topology remain unexplored. Here, we investigate how the number of...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2018-10, Vol.122 (42), p.9703-9712 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9712 |
---|---|
container_issue | 42 |
container_start_page | 9703 |
container_title | The journal of physical chemistry. B |
container_volume | 122 |
creator | Nikoofard, Narges Mashaghi, Alireza |
description | Biopolymer unfolding events are ubiquitous in biology and mechanical unfolding is an established approach to study the structure and function of biomolecules, yet whether and how mechanical unfolding processes depend on native state topology remain unexplored. Here, we investigate how the number of unfolding pathways via mechanical methods depends on the circuit topology of a folded chain, which categorizes the arrangement of intrachain contacts into parallel, crossing, and series. Three unfolding strategies, namely, threading through a pore, pulling from the ends, and pulling by threading, are compared. Considering that some contacts may be unbreakable within the relevant forces, we also study the dependence of the unfolding efficiency on the chain topology. Our analysis reveals that the number of pathways and the efficiency of unfolding are critically determined by topology in a manner that depends on the employed mechanical approach, a significant result for interpretation of the unfolding experiments. |
doi_str_mv | 10.1021/acs.jpcb.8b09454 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2125295801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2125295801</sourcerecordid><originalsourceid>FETCH-LOGICAL-a373t-b94269a7a22aa2fbc756becba22df988656fa1f82b7bf4f5f37d680e823408863</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EoqWwM6GMDKTYTuw4I6oKVGphaWfLduySyomD3Qz993VpYGM43Z3uvSfdB8A9glMEMXoWKkx3nZJTJmGZk_wCjBHBMI1VXA4zRZCOwE0IOwgxwYxeg1EGM4JQzsZgvmg6Wyuxr10bEmeSlbNa9Vb4ZO06Z932kBjnkw_RuqCE1clKqy_RRotNNq1xtqrb7S24MsIGfTf0Cdi8ztez93T5-baYvSxTkRXZPpVljmkpCoGxENhIVRAqtZJxr0zJGCXUCGQYloU0uSEmKyrKoGY4y2E8ZxPweM7tvPvuddjzpg5KWyta7frAMYofloRBFKXwLFXeheC14Z2vG-EPHEF-gscjPH6Cxwd40fIwpPey0dWf4ZdWFDydBT9W1_s2Pvt_3hGytXsE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2125295801</pqid></control><display><type>article</type><title>Implications of Molecular Topology for Nanoscale Mechanical Unfolding</title><source>ACS Publications</source><creator>Nikoofard, Narges ; Mashaghi, Alireza</creator><creatorcontrib>Nikoofard, Narges ; Mashaghi, Alireza</creatorcontrib><description>Biopolymer unfolding events are ubiquitous in biology and mechanical unfolding is an established approach to study the structure and function of biomolecules, yet whether and how mechanical unfolding processes depend on native state topology remain unexplored. Here, we investigate how the number of unfolding pathways via mechanical methods depends on the circuit topology of a folded chain, which categorizes the arrangement of intrachain contacts into parallel, crossing, and series. Three unfolding strategies, namely, threading through a pore, pulling from the ends, and pulling by threading, are compared. Considering that some contacts may be unbreakable within the relevant forces, we also study the dependence of the unfolding efficiency on the chain topology. Our analysis reveals that the number of pathways and the efficiency of unfolding are critically determined by topology in a manner that depends on the employed mechanical approach, a significant result for interpretation of the unfolding experiments.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.8b09454</identifier><identifier>PMID: 30351148</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. B, 2018-10, Vol.122 (42), p.9703-9712</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a373t-b94269a7a22aa2fbc756becba22df988656fa1f82b7bf4f5f37d680e823408863</citedby><cites>FETCH-LOGICAL-a373t-b94269a7a22aa2fbc756becba22df988656fa1f82b7bf4f5f37d680e823408863</cites><orcidid>0000-0001-8623-3144 ; 0000-0002-2157-1211</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.8b09454$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.8b09454$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2764,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30351148$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nikoofard, Narges</creatorcontrib><creatorcontrib>Mashaghi, Alireza</creatorcontrib><title>Implications of Molecular Topology for Nanoscale Mechanical Unfolding</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Biopolymer unfolding events are ubiquitous in biology and mechanical unfolding is an established approach to study the structure and function of biomolecules, yet whether and how mechanical unfolding processes depend on native state topology remain unexplored. Here, we investigate how the number of unfolding pathways via mechanical methods depends on the circuit topology of a folded chain, which categorizes the arrangement of intrachain contacts into parallel, crossing, and series. Three unfolding strategies, namely, threading through a pore, pulling from the ends, and pulling by threading, are compared. Considering that some contacts may be unbreakable within the relevant forces, we also study the dependence of the unfolding efficiency on the chain topology. Our analysis reveals that the number of pathways and the efficiency of unfolding are critically determined by topology in a manner that depends on the employed mechanical approach, a significant result for interpretation of the unfolding experiments.</description><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EoqWwM6GMDKTYTuw4I6oKVGphaWfLduySyomD3Qz993VpYGM43Z3uvSfdB8A9glMEMXoWKkx3nZJTJmGZk_wCjBHBMI1VXA4zRZCOwE0IOwgxwYxeg1EGM4JQzsZgvmg6Wyuxr10bEmeSlbNa9Vb4ZO06Z932kBjnkw_RuqCE1clKqy_RRotNNq1xtqrb7S24MsIGfTf0Cdi8ztez93T5-baYvSxTkRXZPpVljmkpCoGxENhIVRAqtZJxr0zJGCXUCGQYloU0uSEmKyrKoGY4y2E8ZxPweM7tvPvuddjzpg5KWyta7frAMYofloRBFKXwLFXeheC14Z2vG-EPHEF-gscjPH6Cxwd40fIwpPey0dWf4ZdWFDydBT9W1_s2Pvt_3hGytXsE</recordid><startdate>20181025</startdate><enddate>20181025</enddate><creator>Nikoofard, Narges</creator><creator>Mashaghi, Alireza</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8623-3144</orcidid><orcidid>https://orcid.org/0000-0002-2157-1211</orcidid></search><sort><creationdate>20181025</creationdate><title>Implications of Molecular Topology for Nanoscale Mechanical Unfolding</title><author>Nikoofard, Narges ; Mashaghi, Alireza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a373t-b94269a7a22aa2fbc756becba22df988656fa1f82b7bf4f5f37d680e823408863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nikoofard, Narges</creatorcontrib><creatorcontrib>Mashaghi, Alireza</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nikoofard, Narges</au><au>Mashaghi, Alireza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implications of Molecular Topology for Nanoscale Mechanical Unfolding</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2018-10-25</date><risdate>2018</risdate><volume>122</volume><issue>42</issue><spage>9703</spage><epage>9712</epage><pages>9703-9712</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Biopolymer unfolding events are ubiquitous in biology and mechanical unfolding is an established approach to study the structure and function of biomolecules, yet whether and how mechanical unfolding processes depend on native state topology remain unexplored. Here, we investigate how the number of unfolding pathways via mechanical methods depends on the circuit topology of a folded chain, which categorizes the arrangement of intrachain contacts into parallel, crossing, and series. Three unfolding strategies, namely, threading through a pore, pulling from the ends, and pulling by threading, are compared. Considering that some contacts may be unbreakable within the relevant forces, we also study the dependence of the unfolding efficiency on the chain topology. Our analysis reveals that the number of pathways and the efficiency of unfolding are critically determined by topology in a manner that depends on the employed mechanical approach, a significant result for interpretation of the unfolding experiments.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30351148</pmid><doi>10.1021/acs.jpcb.8b09454</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8623-3144</orcidid><orcidid>https://orcid.org/0000-0002-2157-1211</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2018-10, Vol.122 (42), p.9703-9712 |
issn | 1520-6106 1520-5207 |
language | eng |
recordid | cdi_proquest_miscellaneous_2125295801 |
source | ACS Publications |
title | Implications of Molecular Topology for Nanoscale Mechanical Unfolding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A20%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implications%20of%20Molecular%20Topology%20for%20Nanoscale%20Mechanical%20Unfolding&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Nikoofard,%20Narges&rft.date=2018-10-25&rft.volume=122&rft.issue=42&rft.spage=9703&rft.epage=9712&rft.pages=9703-9712&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.8b09454&rft_dat=%3Cproquest_cross%3E2125295801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2125295801&rft_id=info:pmid/30351148&rfr_iscdi=true |