In vitro fermentation of raffinose by the human gut bacteria

Raffinose has become a major focus of research interest and recent studies have shown that besides beneficial bifidobacteria and lactobacilli, Escherichia coli, Enterococcus faecium and Streptococcus pneumoniae can also utilize raffinose and raffinose might lead to flatulence in some hosts. Therefor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food & function 2018-11, Vol.9 (11), p.5824-5831
Hauptverfasser: Mao, Bingyong, Tang, Hongyu, Gu, Jiayu, Li, Dongyao, Cui, Shumao, Zhao, Jianxin, Zhang, Hao, Chen, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5831
container_issue 11
container_start_page 5824
container_title Food & function
container_volume 9
creator Mao, Bingyong
Tang, Hongyu
Gu, Jiayu
Li, Dongyao
Cui, Shumao
Zhao, Jianxin
Zhang, Hao
Chen, Wei
description Raffinose has become a major focus of research interest and recent studies have shown that besides beneficial bifidobacteria and lactobacilli, Escherichia coli, Enterococcus faecium and Streptococcus pneumoniae can also utilize raffinose and raffinose might lead to flatulence in some hosts. Therefore, it is required to find out the raffinose-metabolizing bacteria in the gut and the bacteria responsible for the flatulence. The BLASTP search results showed that the homologous proteins of glycosidases related to raffinose utilization are widely distributed in 196 of the 528 gut bacterial strains. Fifty-nine bacterial strains belonging to nine species of five genera were isolated from human feces and were found to be capable of utilizing raffinose; of these species, Enterococcus avium and Streptococcus salivarius were reported for the first time. High-performance liquid chromatography (HPLC) analysis of the supernatants of the nine species revealed that the bacteria could utilize raffinose in different manners. Glucose and melibiose were detected in the supernatants of Enterococcus avium E5 and Streptococcus salivarius B5, respectively. However, no resulting saccharides of raffinose degradation were detected in the supernatants of other seven strains, indicating that they had different raffinose utilization types from Enterococcus avium E5 and Streptococcus salivarius B5. Gas was produced with raffinose utilization by Escherichia coli, Enterococcus faecium, Streptococcus macedonicus, Streptococcus pasteurianus and Enterococcus avium. Thus, more attention should be paid to the raffinose-utilizing bacteria besides bifidobacteria and further studies are required to reveal the mechanisms of raffinose utilization to clarify the relationship between raffinose and gut bacteria.
doi_str_mv 10.1039/c8fo01687a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2125295069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2125295069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-ac15487897cd3d113170de69f1cf13dca54553adc938ee3279194676488e65f63</originalsourceid><addsrcrecordid>eNpdkMtKAzEUQIMottRu_AAJuBFhNI_JC9yUwWqh0I2CuyHNJHZKZ1KTjNC_d2pbF97NvYvD4XIAuMboASOqHo10HmEuhT4DQ4JyknGGPs5Pd674AIxjXKN-qFJSyUswoIgyQTAfgqdZC7_rFDx0NjS2TTrVvoXewaCdq1sfLVzuYFpZuOoa3cLPLsGlNsmGWl-BC6c30Y6PewTep89vxWs2X7zMisk8M5TxlGmDWS6FVMJUtMKYYoEqy5XDxmFaGc1yxqiujKLSWkqEwirngudSWs4cpyNwd_Bug__qbExlU0djNxvdWt_FkmDCiGKIqx69_YeufRfa_rueokQSIsVeeH-gTPAxBuvKbagbHXYlRuU-a1nI6eI366SHb47KbtnY6g89RaQ_0T9vxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132822876</pqid></control><display><type>article</type><title>In vitro fermentation of raffinose by the human gut bacteria</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Mao, Bingyong ; Tang, Hongyu ; Gu, Jiayu ; Li, Dongyao ; Cui, Shumao ; Zhao, Jianxin ; Zhang, Hao ; Chen, Wei</creator><creatorcontrib>Mao, Bingyong ; Tang, Hongyu ; Gu, Jiayu ; Li, Dongyao ; Cui, Shumao ; Zhao, Jianxin ; Zhang, Hao ; Chen, Wei</creatorcontrib><description>Raffinose has become a major focus of research interest and recent studies have shown that besides beneficial bifidobacteria and lactobacilli, Escherichia coli, Enterococcus faecium and Streptococcus pneumoniae can also utilize raffinose and raffinose might lead to flatulence in some hosts. Therefore, it is required to find out the raffinose-metabolizing bacteria in the gut and the bacteria responsible for the flatulence. The BLASTP search results showed that the homologous proteins of glycosidases related to raffinose utilization are widely distributed in 196 of the 528 gut bacterial strains. Fifty-nine bacterial strains belonging to nine species of five genera were isolated from human feces and were found to be capable of utilizing raffinose; of these species, Enterococcus avium and Streptococcus salivarius were reported for the first time. High-performance liquid chromatography (HPLC) analysis of the supernatants of the nine species revealed that the bacteria could utilize raffinose in different manners. Glucose and melibiose were detected in the supernatants of Enterococcus avium E5 and Streptococcus salivarius B5, respectively. However, no resulting saccharides of raffinose degradation were detected in the supernatants of other seven strains, indicating that they had different raffinose utilization types from Enterococcus avium E5 and Streptococcus salivarius B5. Gas was produced with raffinose utilization by Escherichia coli, Enterococcus faecium, Streptococcus macedonicus, Streptococcus pasteurianus and Enterococcus avium. Thus, more attention should be paid to the raffinose-utilizing bacteria besides bifidobacteria and further studies are required to reveal the mechanisms of raffinose utilization to clarify the relationship between raffinose and gut bacteria.</description><identifier>ISSN: 2042-6496</identifier><identifier>EISSN: 2042-650X</identifier><identifier>DOI: 10.1039/c8fo01687a</identifier><identifier>PMID: 30357216</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Bacteria ; Bifidobacterium - isolation &amp; purification ; Bifidobacterium - metabolism ; Biodegradation ; Carbohydrates ; Chromatography, High Pressure Liquid ; E coli ; Enterococcus - isolation &amp; purification ; Enterococcus - metabolism ; Enterococcus avium ; Enterococcus faecium ; Escherichia coli ; Escherichia coli - isolation &amp; purification ; Escherichia coli - metabolism ; Feces - microbiology ; Fermentation ; Flatulence ; Gastrointestinal Microbiome ; Glycosidases ; Glycoside Hydrolases - metabolism ; High performance liquid chromatography ; Homology ; Humans ; Lactobacilli ; Lactobacillus - isolation &amp; purification ; Lactobacillus - metabolism ; Liquid chromatography ; Melibiose ; Proteins ; Raffinose ; Raffinose - metabolism ; Saccharides ; Species ; Strains (organisms) ; Streptococcus - isolation &amp; purification ; Streptococcus - metabolism ; Streptococcus infections ; Streptococcus salivarius ; Utilization</subject><ispartof>Food &amp; function, 2018-11, Vol.9 (11), p.5824-5831</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-ac15487897cd3d113170de69f1cf13dca54553adc938ee3279194676488e65f63</citedby><cites>FETCH-LOGICAL-c356t-ac15487897cd3d113170de69f1cf13dca54553adc938ee3279194676488e65f63</cites><orcidid>0000-0003-3348-4710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30357216$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mao, Bingyong</creatorcontrib><creatorcontrib>Tang, Hongyu</creatorcontrib><creatorcontrib>Gu, Jiayu</creatorcontrib><creatorcontrib>Li, Dongyao</creatorcontrib><creatorcontrib>Cui, Shumao</creatorcontrib><creatorcontrib>Zhao, Jianxin</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><title>In vitro fermentation of raffinose by the human gut bacteria</title><title>Food &amp; function</title><addtitle>Food Funct</addtitle><description>Raffinose has become a major focus of research interest and recent studies have shown that besides beneficial bifidobacteria and lactobacilli, Escherichia coli, Enterococcus faecium and Streptococcus pneumoniae can also utilize raffinose and raffinose might lead to flatulence in some hosts. Therefore, it is required to find out the raffinose-metabolizing bacteria in the gut and the bacteria responsible for the flatulence. The BLASTP search results showed that the homologous proteins of glycosidases related to raffinose utilization are widely distributed in 196 of the 528 gut bacterial strains. Fifty-nine bacterial strains belonging to nine species of five genera were isolated from human feces and were found to be capable of utilizing raffinose; of these species, Enterococcus avium and Streptococcus salivarius were reported for the first time. High-performance liquid chromatography (HPLC) analysis of the supernatants of the nine species revealed that the bacteria could utilize raffinose in different manners. Glucose and melibiose were detected in the supernatants of Enterococcus avium E5 and Streptococcus salivarius B5, respectively. However, no resulting saccharides of raffinose degradation were detected in the supernatants of other seven strains, indicating that they had different raffinose utilization types from Enterococcus avium E5 and Streptococcus salivarius B5. Gas was produced with raffinose utilization by Escherichia coli, Enterococcus faecium, Streptococcus macedonicus, Streptococcus pasteurianus and Enterococcus avium. Thus, more attention should be paid to the raffinose-utilizing bacteria besides bifidobacteria and further studies are required to reveal the mechanisms of raffinose utilization to clarify the relationship between raffinose and gut bacteria.</description><subject>Bacteria</subject><subject>Bifidobacterium - isolation &amp; purification</subject><subject>Bifidobacterium - metabolism</subject><subject>Biodegradation</subject><subject>Carbohydrates</subject><subject>Chromatography, High Pressure Liquid</subject><subject>E coli</subject><subject>Enterococcus - isolation &amp; purification</subject><subject>Enterococcus - metabolism</subject><subject>Enterococcus avium</subject><subject>Enterococcus faecium</subject><subject>Escherichia coli</subject><subject>Escherichia coli - isolation &amp; purification</subject><subject>Escherichia coli - metabolism</subject><subject>Feces - microbiology</subject><subject>Fermentation</subject><subject>Flatulence</subject><subject>Gastrointestinal Microbiome</subject><subject>Glycosidases</subject><subject>Glycoside Hydrolases - metabolism</subject><subject>High performance liquid chromatography</subject><subject>Homology</subject><subject>Humans</subject><subject>Lactobacilli</subject><subject>Lactobacillus - isolation &amp; purification</subject><subject>Lactobacillus - metabolism</subject><subject>Liquid chromatography</subject><subject>Melibiose</subject><subject>Proteins</subject><subject>Raffinose</subject><subject>Raffinose - metabolism</subject><subject>Saccharides</subject><subject>Species</subject><subject>Strains (organisms)</subject><subject>Streptococcus - isolation &amp; purification</subject><subject>Streptococcus - metabolism</subject><subject>Streptococcus infections</subject><subject>Streptococcus salivarius</subject><subject>Utilization</subject><issn>2042-6496</issn><issn>2042-650X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkMtKAzEUQIMottRu_AAJuBFhNI_JC9yUwWqh0I2CuyHNJHZKZ1KTjNC_d2pbF97NvYvD4XIAuMboASOqHo10HmEuhT4DQ4JyknGGPs5Pd674AIxjXKN-qFJSyUswoIgyQTAfgqdZC7_rFDx0NjS2TTrVvoXewaCdq1sfLVzuYFpZuOoa3cLPLsGlNsmGWl-BC6c30Y6PewTep89vxWs2X7zMisk8M5TxlGmDWS6FVMJUtMKYYoEqy5XDxmFaGc1yxqiujKLSWkqEwirngudSWs4cpyNwd_Bug__qbExlU0djNxvdWt_FkmDCiGKIqx69_YeufRfa_rueokQSIsVeeH-gTPAxBuvKbagbHXYlRuU-a1nI6eI366SHb47KbtnY6g89RaQ_0T9vxA</recordid><startdate>20181114</startdate><enddate>20181114</enddate><creator>Mao, Bingyong</creator><creator>Tang, Hongyu</creator><creator>Gu, Jiayu</creator><creator>Li, Dongyao</creator><creator>Cui, Shumao</creator><creator>Zhao, Jianxin</creator><creator>Zhang, Hao</creator><creator>Chen, Wei</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7T7</scope><scope>7TO</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3348-4710</orcidid></search><sort><creationdate>20181114</creationdate><title>In vitro fermentation of raffinose by the human gut bacteria</title><author>Mao, Bingyong ; Tang, Hongyu ; Gu, Jiayu ; Li, Dongyao ; Cui, Shumao ; Zhao, Jianxin ; Zhang, Hao ; Chen, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-ac15487897cd3d113170de69f1cf13dca54553adc938ee3279194676488e65f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bacteria</topic><topic>Bifidobacterium - isolation &amp; purification</topic><topic>Bifidobacterium - metabolism</topic><topic>Biodegradation</topic><topic>Carbohydrates</topic><topic>Chromatography, High Pressure Liquid</topic><topic>E coli</topic><topic>Enterococcus - isolation &amp; purification</topic><topic>Enterococcus - metabolism</topic><topic>Enterococcus avium</topic><topic>Enterococcus faecium</topic><topic>Escherichia coli</topic><topic>Escherichia coli - isolation &amp; purification</topic><topic>Escherichia coli - metabolism</topic><topic>Feces - microbiology</topic><topic>Fermentation</topic><topic>Flatulence</topic><topic>Gastrointestinal Microbiome</topic><topic>Glycosidases</topic><topic>Glycoside Hydrolases - metabolism</topic><topic>High performance liquid chromatography</topic><topic>Homology</topic><topic>Humans</topic><topic>Lactobacilli</topic><topic>Lactobacillus - isolation &amp; purification</topic><topic>Lactobacillus - metabolism</topic><topic>Liquid chromatography</topic><topic>Melibiose</topic><topic>Proteins</topic><topic>Raffinose</topic><topic>Raffinose - metabolism</topic><topic>Saccharides</topic><topic>Species</topic><topic>Strains (organisms)</topic><topic>Streptococcus - isolation &amp; purification</topic><topic>Streptococcus - metabolism</topic><topic>Streptococcus infections</topic><topic>Streptococcus salivarius</topic><topic>Utilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, Bingyong</creatorcontrib><creatorcontrib>Tang, Hongyu</creatorcontrib><creatorcontrib>Gu, Jiayu</creatorcontrib><creatorcontrib>Li, Dongyao</creatorcontrib><creatorcontrib>Cui, Shumao</creatorcontrib><creatorcontrib>Zhao, Jianxin</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Food &amp; function</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mao, Bingyong</au><au>Tang, Hongyu</au><au>Gu, Jiayu</au><au>Li, Dongyao</au><au>Cui, Shumao</au><au>Zhao, Jianxin</au><au>Zhang, Hao</au><au>Chen, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro fermentation of raffinose by the human gut bacteria</atitle><jtitle>Food &amp; function</jtitle><addtitle>Food Funct</addtitle><date>2018-11-14</date><risdate>2018</risdate><volume>9</volume><issue>11</issue><spage>5824</spage><epage>5831</epage><pages>5824-5831</pages><issn>2042-6496</issn><eissn>2042-650X</eissn><abstract>Raffinose has become a major focus of research interest and recent studies have shown that besides beneficial bifidobacteria and lactobacilli, Escherichia coli, Enterococcus faecium and Streptococcus pneumoniae can also utilize raffinose and raffinose might lead to flatulence in some hosts. Therefore, it is required to find out the raffinose-metabolizing bacteria in the gut and the bacteria responsible for the flatulence. The BLASTP search results showed that the homologous proteins of glycosidases related to raffinose utilization are widely distributed in 196 of the 528 gut bacterial strains. Fifty-nine bacterial strains belonging to nine species of five genera were isolated from human feces and were found to be capable of utilizing raffinose; of these species, Enterococcus avium and Streptococcus salivarius were reported for the first time. High-performance liquid chromatography (HPLC) analysis of the supernatants of the nine species revealed that the bacteria could utilize raffinose in different manners. Glucose and melibiose were detected in the supernatants of Enterococcus avium E5 and Streptococcus salivarius B5, respectively. However, no resulting saccharides of raffinose degradation were detected in the supernatants of other seven strains, indicating that they had different raffinose utilization types from Enterococcus avium E5 and Streptococcus salivarius B5. Gas was produced with raffinose utilization by Escherichia coli, Enterococcus faecium, Streptococcus macedonicus, Streptococcus pasteurianus and Enterococcus avium. Thus, more attention should be paid to the raffinose-utilizing bacteria besides bifidobacteria and further studies are required to reveal the mechanisms of raffinose utilization to clarify the relationship between raffinose and gut bacteria.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30357216</pmid><doi>10.1039/c8fo01687a</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3348-4710</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2042-6496
ispartof Food & function, 2018-11, Vol.9 (11), p.5824-5831
issn 2042-6496
2042-650X
language eng
recordid cdi_proquest_miscellaneous_2125295069
source MEDLINE; Royal Society Of Chemistry Journals 2008-
subjects Bacteria
Bifidobacterium - isolation & purification
Bifidobacterium - metabolism
Biodegradation
Carbohydrates
Chromatography, High Pressure Liquid
E coli
Enterococcus - isolation & purification
Enterococcus - metabolism
Enterococcus avium
Enterococcus faecium
Escherichia coli
Escherichia coli - isolation & purification
Escherichia coli - metabolism
Feces - microbiology
Fermentation
Flatulence
Gastrointestinal Microbiome
Glycosidases
Glycoside Hydrolases - metabolism
High performance liquid chromatography
Homology
Humans
Lactobacilli
Lactobacillus - isolation & purification
Lactobacillus - metabolism
Liquid chromatography
Melibiose
Proteins
Raffinose
Raffinose - metabolism
Saccharides
Species
Strains (organisms)
Streptococcus - isolation & purification
Streptococcus - metabolism
Streptococcus infections
Streptococcus salivarius
Utilization
title In vitro fermentation of raffinose by the human gut bacteria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T15%3A48%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20fermentation%20of%20raffinose%20by%20the%20human%20gut%20bacteria&rft.jtitle=Food%20&%20function&rft.au=Mao,%20Bingyong&rft.date=2018-11-14&rft.volume=9&rft.issue=11&rft.spage=5824&rft.epage=5831&rft.pages=5824-5831&rft.issn=2042-6496&rft.eissn=2042-650X&rft_id=info:doi/10.1039/c8fo01687a&rft_dat=%3Cproquest_cross%3E2125295069%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132822876&rft_id=info:pmid/30357216&rfr_iscdi=true