Using differential evolution to improve the accuracy of bank rating systems
Credit rating is the evaluation of the likelihood of an obligor to default on a loan. Each obligor in the bank's credit portfolio is assigned to a certain rating class, or PD (probability of default) bucket; all obligors in a PD bucket then receive the same “pooled” PD, based on which a capital...
Gespeichert in:
Veröffentlicht in: | Computational statistics & data analysis 2007-09, Vol.52 (1), p.68-87 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 87 |
---|---|
container_issue | 1 |
container_start_page | 68 |
container_title | Computational statistics & data analysis |
container_volume | 52 |
creator | Krink, Thiemo Paterlini, Sandra Resti, Andrea |
description | Credit rating is the evaluation of the likelihood of an obligor to default on a loan. Each obligor in the bank's credit portfolio is assigned to a certain rating class, or
PD (probability of default) bucket; all obligors in a
PD bucket then receive the same “pooled”
PD, based on which a capital charge against credit risk must be computed. The only analytical approach to this problem is based on
k
-means and has some limitations in practice. An error minimization approach to credit rating using differential evolution (DE) is introduced. The performances of DE and other common search heuristics are compared using credit rating data of a major Italian bank. Empirical results show that DE is clearly superior compared to a genetic algorithm (GA), particle swarm optimization (PSO), random search (RS) and two naı¨ve partitioning approaches. Moreover, the proposed approach obtained better results than
k
-means in much less runtime for a simplified instance of the problem where within-groups variances can be used for clustering. |
doi_str_mv | 10.1016/j.csda.2007.02.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21245535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947307000539</els_id><sourcerecordid>21245535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-75ce88da7463def0fbb64f5d8d1a80614b8802c80b5a77a338c8b360822733873</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVdZuWvNo20y4EYGXzjgxlmHNL11MvYxJplC_72pFZcuzr1cOOdw-RC6piSlhBa3-9T4SqeMEJESlhJKT9CCSsESwXN2ihbRJJJVJvg5uvB-TwhhmZAL9Lr1tvvAla1rcNAFqxsMQ98cg-07HHps24PrB8BhB1gbc3TajLivcam7T-x0mNJ-9AFaf4nOat14uPrdS7R9fHhfPyebt6eX9f0mMXxVhETkBqSstMgKXkFN6rIssjqvZEW1JAXNSikJM5KUuRZCcy6NLHlBJGMiHoIv0c3cGz_7OoIPqrXeQNPoDvqjV4yyLM95Ho1sNhrXe--gVgdnW-1GRYmauKm9mripiZsiTEVuMfQ8hxwcwPwlAGCydloNiuucxTFG_SS5tlE06hBVSCWF2oU2Vt3NVRBpDBac8sZCZ6CyDkxQVW__--QbkaSPNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21245535</pqid></control><display><type>article</type><title>Using differential evolution to improve the accuracy of bank rating systems</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Krink, Thiemo ; Paterlini, Sandra ; Resti, Andrea</creator><creatorcontrib>Krink, Thiemo ; Paterlini, Sandra ; Resti, Andrea</creatorcontrib><description>Credit rating is the evaluation of the likelihood of an obligor to default on a loan. Each obligor in the bank's credit portfolio is assigned to a certain rating class, or
PD (probability of default) bucket; all obligors in a
PD bucket then receive the same “pooled”
PD, based on which a capital charge against credit risk must be computed. The only analytical approach to this problem is based on
k
-means and has some limitations in practice. An error minimization approach to credit rating using differential evolution (DE) is introduced. The performances of DE and other common search heuristics are compared using credit rating data of a major Italian bank. Empirical results show that DE is clearly superior compared to a genetic algorithm (GA), particle swarm optimization (PSO), random search (RS) and two naı¨ve partitioning approaches. Moreover, the proposed approach obtained better results than
k
-means in much less runtime for a simplified instance of the problem where within-groups variances can be used for clustering.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2007.02.011</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Clustering ; Credit rating ; Differential evolution ; PD bucket ; Probability of default</subject><ispartof>Computational statistics & data analysis, 2007-09, Vol.52 (1), p.68-87</ispartof><rights>2007 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-75ce88da7463def0fbb64f5d8d1a80614b8802c80b5a77a338c8b360822733873</citedby><cites>FETCH-LOGICAL-c396t-75ce88da7463def0fbb64f5d8d1a80614b8802c80b5a77a338c8b360822733873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.csda.2007.02.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,3994,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeecsdana/v_3a52_3ay_3a2007_3ai_3a1_3ap_3a68-87.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Krink, Thiemo</creatorcontrib><creatorcontrib>Paterlini, Sandra</creatorcontrib><creatorcontrib>Resti, Andrea</creatorcontrib><title>Using differential evolution to improve the accuracy of bank rating systems</title><title>Computational statistics & data analysis</title><description>Credit rating is the evaluation of the likelihood of an obligor to default on a loan. Each obligor in the bank's credit portfolio is assigned to a certain rating class, or
PD (probability of default) bucket; all obligors in a
PD bucket then receive the same “pooled”
PD, based on which a capital charge against credit risk must be computed. The only analytical approach to this problem is based on
k
-means and has some limitations in practice. An error minimization approach to credit rating using differential evolution (DE) is introduced. The performances of DE and other common search heuristics are compared using credit rating data of a major Italian bank. Empirical results show that DE is clearly superior compared to a genetic algorithm (GA), particle swarm optimization (PSO), random search (RS) and two naı¨ve partitioning approaches. Moreover, the proposed approach obtained better results than
k
-means in much less runtime for a simplified instance of the problem where within-groups variances can be used for clustering.</description><subject>Clustering</subject><subject>Credit rating</subject><subject>Differential evolution</subject><subject>PD bucket</subject><subject>Probability of default</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9kEtLxDAUhYMoOI7-AVdZuWvNo20y4EYGXzjgxlmHNL11MvYxJplC_72pFZcuzr1cOOdw-RC6piSlhBa3-9T4SqeMEJESlhJKT9CCSsESwXN2ihbRJJJVJvg5uvB-TwhhmZAL9Lr1tvvAla1rcNAFqxsMQ98cg-07HHps24PrB8BhB1gbc3TajLivcam7T-x0mNJ-9AFaf4nOat14uPrdS7R9fHhfPyebt6eX9f0mMXxVhETkBqSstMgKXkFN6rIssjqvZEW1JAXNSikJM5KUuRZCcy6NLHlBJGMiHoIv0c3cGz_7OoIPqrXeQNPoDvqjV4yyLM95Ho1sNhrXe--gVgdnW-1GRYmauKm9mripiZsiTEVuMfQ8hxwcwPwlAGCydloNiuucxTFG_SS5tlE06hBVSCWF2oU2Vt3NVRBpDBac8sZCZ6CyDkxQVW__--QbkaSPNQ</recordid><startdate>20070915</startdate><enddate>20070915</enddate><creator>Krink, Thiemo</creator><creator>Paterlini, Sandra</creator><creator>Resti, Andrea</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U1</scope><scope>7U2</scope><scope>C1K</scope></search><sort><creationdate>20070915</creationdate><title>Using differential evolution to improve the accuracy of bank rating systems</title><author>Krink, Thiemo ; Paterlini, Sandra ; Resti, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-75ce88da7463def0fbb64f5d8d1a80614b8802c80b5a77a338c8b360822733873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Clustering</topic><topic>Credit rating</topic><topic>Differential evolution</topic><topic>PD bucket</topic><topic>Probability of default</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krink, Thiemo</creatorcontrib><creatorcontrib>Paterlini, Sandra</creatorcontrib><creatorcontrib>Resti, Andrea</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Computational statistics & data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krink, Thiemo</au><au>Paterlini, Sandra</au><au>Resti, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using differential evolution to improve the accuracy of bank rating systems</atitle><jtitle>Computational statistics & data analysis</jtitle><date>2007-09-15</date><risdate>2007</risdate><volume>52</volume><issue>1</issue><spage>68</spage><epage>87</epage><pages>68-87</pages><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>Credit rating is the evaluation of the likelihood of an obligor to default on a loan. Each obligor in the bank's credit portfolio is assigned to a certain rating class, or
PD (probability of default) bucket; all obligors in a
PD bucket then receive the same “pooled”
PD, based on which a capital charge against credit risk must be computed. The only analytical approach to this problem is based on
k
-means and has some limitations in practice. An error minimization approach to credit rating using differential evolution (DE) is introduced. The performances of DE and other common search heuristics are compared using credit rating data of a major Italian bank. Empirical results show that DE is clearly superior compared to a genetic algorithm (GA), particle swarm optimization (PSO), random search (RS) and two naı¨ve partitioning approaches. Moreover, the proposed approach obtained better results than
k
-means in much less runtime for a simplified instance of the problem where within-groups variances can be used for clustering.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.csda.2007.02.011</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-9473 |
ispartof | Computational statistics & data analysis, 2007-09, Vol.52 (1), p.68-87 |
issn | 0167-9473 1872-7352 |
language | eng |
recordid | cdi_proquest_miscellaneous_21245535 |
source | RePEc; Elsevier ScienceDirect Journals |
subjects | Clustering Credit rating Differential evolution PD bucket Probability of default |
title | Using differential evolution to improve the accuracy of bank rating systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A58%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20differential%20evolution%20to%20improve%20the%20accuracy%20of%20bank%20rating%20systems&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Krink,%20Thiemo&rft.date=2007-09-15&rft.volume=52&rft.issue=1&rft.spage=68&rft.epage=87&rft.pages=68-87&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2007.02.011&rft_dat=%3Cproquest_cross%3E21245535%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21245535&rft_id=info:pmid/&rft_els_id=S0167947307000539&rfr_iscdi=true |