Using differential evolution to improve the accuracy of bank rating systems

Credit rating is the evaluation of the likelihood of an obligor to default on a loan. Each obligor in the bank's credit portfolio is assigned to a certain rating class, or PD (probability of default) bucket; all obligors in a PD bucket then receive the same “pooled” PD, based on which a capital...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics & data analysis 2007-09, Vol.52 (1), p.68-87
Hauptverfasser: Krink, Thiemo, Paterlini, Sandra, Resti, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 87
container_issue 1
container_start_page 68
container_title Computational statistics & data analysis
container_volume 52
creator Krink, Thiemo
Paterlini, Sandra
Resti, Andrea
description Credit rating is the evaluation of the likelihood of an obligor to default on a loan. Each obligor in the bank's credit portfolio is assigned to a certain rating class, or PD (probability of default) bucket; all obligors in a PD bucket then receive the same “pooled” PD, based on which a capital charge against credit risk must be computed. The only analytical approach to this problem is based on k -means and has some limitations in practice. An error minimization approach to credit rating using differential evolution (DE) is introduced. The performances of DE and other common search heuristics are compared using credit rating data of a major Italian bank. Empirical results show that DE is clearly superior compared to a genetic algorithm (GA), particle swarm optimization (PSO), random search (RS) and two naı¨ve partitioning approaches. Moreover, the proposed approach obtained better results than k -means in much less runtime for a simplified instance of the problem where within-groups variances can be used for clustering.
doi_str_mv 10.1016/j.csda.2007.02.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21245535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947307000539</els_id><sourcerecordid>21245535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-75ce88da7463def0fbb64f5d8d1a80614b8802c80b5a77a338c8b360822733873</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVdZuWvNo20y4EYGXzjgxlmHNL11MvYxJplC_72pFZcuzr1cOOdw-RC6piSlhBa3-9T4SqeMEJESlhJKT9CCSsESwXN2ihbRJJJVJvg5uvB-TwhhmZAL9Lr1tvvAla1rcNAFqxsMQ98cg-07HHps24PrB8BhB1gbc3TajLivcam7T-x0mNJ-9AFaf4nOat14uPrdS7R9fHhfPyebt6eX9f0mMXxVhETkBqSstMgKXkFN6rIssjqvZEW1JAXNSikJM5KUuRZCcy6NLHlBJGMiHoIv0c3cGz_7OoIPqrXeQNPoDvqjV4yyLM95Ho1sNhrXe--gVgdnW-1GRYmauKm9mripiZsiTEVuMfQ8hxwcwPwlAGCydloNiuucxTFG_SS5tlE06hBVSCWF2oU2Vt3NVRBpDBac8sZCZ6CyDkxQVW__--QbkaSPNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21245535</pqid></control><display><type>article</type><title>Using differential evolution to improve the accuracy of bank rating systems</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Krink, Thiemo ; Paterlini, Sandra ; Resti, Andrea</creator><creatorcontrib>Krink, Thiemo ; Paterlini, Sandra ; Resti, Andrea</creatorcontrib><description>Credit rating is the evaluation of the likelihood of an obligor to default on a loan. Each obligor in the bank's credit portfolio is assigned to a certain rating class, or PD (probability of default) bucket; all obligors in a PD bucket then receive the same “pooled” PD, based on which a capital charge against credit risk must be computed. The only analytical approach to this problem is based on k -means and has some limitations in practice. An error minimization approach to credit rating using differential evolution (DE) is introduced. The performances of DE and other common search heuristics are compared using credit rating data of a major Italian bank. Empirical results show that DE is clearly superior compared to a genetic algorithm (GA), particle swarm optimization (PSO), random search (RS) and two naı¨ve partitioning approaches. Moreover, the proposed approach obtained better results than k -means in much less runtime for a simplified instance of the problem where within-groups variances can be used for clustering.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2007.02.011</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Clustering ; Credit rating ; Differential evolution ; PD bucket ; Probability of default</subject><ispartof>Computational statistics &amp; data analysis, 2007-09, Vol.52 (1), p.68-87</ispartof><rights>2007 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-75ce88da7463def0fbb64f5d8d1a80614b8802c80b5a77a338c8b360822733873</citedby><cites>FETCH-LOGICAL-c396t-75ce88da7463def0fbb64f5d8d1a80614b8802c80b5a77a338c8b360822733873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.csda.2007.02.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,3994,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeecsdana/v_3a52_3ay_3a2007_3ai_3a1_3ap_3a68-87.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Krink, Thiemo</creatorcontrib><creatorcontrib>Paterlini, Sandra</creatorcontrib><creatorcontrib>Resti, Andrea</creatorcontrib><title>Using differential evolution to improve the accuracy of bank rating systems</title><title>Computational statistics &amp; data analysis</title><description>Credit rating is the evaluation of the likelihood of an obligor to default on a loan. Each obligor in the bank's credit portfolio is assigned to a certain rating class, or PD (probability of default) bucket; all obligors in a PD bucket then receive the same “pooled” PD, based on which a capital charge against credit risk must be computed. The only analytical approach to this problem is based on k -means and has some limitations in practice. An error minimization approach to credit rating using differential evolution (DE) is introduced. The performances of DE and other common search heuristics are compared using credit rating data of a major Italian bank. Empirical results show that DE is clearly superior compared to a genetic algorithm (GA), particle swarm optimization (PSO), random search (RS) and two naı¨ve partitioning approaches. Moreover, the proposed approach obtained better results than k -means in much less runtime for a simplified instance of the problem where within-groups variances can be used for clustering.</description><subject>Clustering</subject><subject>Credit rating</subject><subject>Differential evolution</subject><subject>PD bucket</subject><subject>Probability of default</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9kEtLxDAUhYMoOI7-AVdZuWvNo20y4EYGXzjgxlmHNL11MvYxJplC_72pFZcuzr1cOOdw-RC6piSlhBa3-9T4SqeMEJESlhJKT9CCSsESwXN2ihbRJJJVJvg5uvB-TwhhmZAL9Lr1tvvAla1rcNAFqxsMQ98cg-07HHps24PrB8BhB1gbc3TajLivcam7T-x0mNJ-9AFaf4nOat14uPrdS7R9fHhfPyebt6eX9f0mMXxVhETkBqSstMgKXkFN6rIssjqvZEW1JAXNSikJM5KUuRZCcy6NLHlBJGMiHoIv0c3cGz_7OoIPqrXeQNPoDvqjV4yyLM95Ho1sNhrXe--gVgdnW-1GRYmauKm9mripiZsiTEVuMfQ8hxwcwPwlAGCydloNiuucxTFG_SS5tlE06hBVSCWF2oU2Vt3NVRBpDBac8sZCZ6CyDkxQVW__--QbkaSPNQ</recordid><startdate>20070915</startdate><enddate>20070915</enddate><creator>Krink, Thiemo</creator><creator>Paterlini, Sandra</creator><creator>Resti, Andrea</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U1</scope><scope>7U2</scope><scope>C1K</scope></search><sort><creationdate>20070915</creationdate><title>Using differential evolution to improve the accuracy of bank rating systems</title><author>Krink, Thiemo ; Paterlini, Sandra ; Resti, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-75ce88da7463def0fbb64f5d8d1a80614b8802c80b5a77a338c8b360822733873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Clustering</topic><topic>Credit rating</topic><topic>Differential evolution</topic><topic>PD bucket</topic><topic>Probability of default</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krink, Thiemo</creatorcontrib><creatorcontrib>Paterlini, Sandra</creatorcontrib><creatorcontrib>Resti, Andrea</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Computational statistics &amp; data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krink, Thiemo</au><au>Paterlini, Sandra</au><au>Resti, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using differential evolution to improve the accuracy of bank rating systems</atitle><jtitle>Computational statistics &amp; data analysis</jtitle><date>2007-09-15</date><risdate>2007</risdate><volume>52</volume><issue>1</issue><spage>68</spage><epage>87</epage><pages>68-87</pages><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>Credit rating is the evaluation of the likelihood of an obligor to default on a loan. Each obligor in the bank's credit portfolio is assigned to a certain rating class, or PD (probability of default) bucket; all obligors in a PD bucket then receive the same “pooled” PD, based on which a capital charge against credit risk must be computed. The only analytical approach to this problem is based on k -means and has some limitations in practice. An error minimization approach to credit rating using differential evolution (DE) is introduced. The performances of DE and other common search heuristics are compared using credit rating data of a major Italian bank. Empirical results show that DE is clearly superior compared to a genetic algorithm (GA), particle swarm optimization (PSO), random search (RS) and two naı¨ve partitioning approaches. Moreover, the proposed approach obtained better results than k -means in much less runtime for a simplified instance of the problem where within-groups variances can be used for clustering.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.csda.2007.02.011</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-9473
ispartof Computational statistics & data analysis, 2007-09, Vol.52 (1), p.68-87
issn 0167-9473
1872-7352
language eng
recordid cdi_proquest_miscellaneous_21245535
source RePEc; Elsevier ScienceDirect Journals
subjects Clustering
Credit rating
Differential evolution
PD bucket
Probability of default
title Using differential evolution to improve the accuracy of bank rating systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A58%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20differential%20evolution%20to%20improve%20the%20accuracy%20of%20bank%20rating%20systems&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Krink,%20Thiemo&rft.date=2007-09-15&rft.volume=52&rft.issue=1&rft.spage=68&rft.epage=87&rft.pages=68-87&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2007.02.011&rft_dat=%3Cproquest_cross%3E21245535%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21245535&rft_id=info:pmid/&rft_els_id=S0167947307000539&rfr_iscdi=true